Blair Creek Stream Mitigation Project Year 1 (2022) Monitoring Report FINAL

Clay County, North Carolina DMS Project ID No. 100047 DEQ Contract No. 7415 DWR# 2020-1094 Hiwassee River Basin: 06020002 DMS RFP #16-007278 (Issued: 6/21/17) USACE Action ID No. SAW-2018-00449

Year 1 Collection Period: September - November 2022

Submitted to/Prepared for: NC Department of Environmental Quality Division of Mitigation Services (DMS) 1652 Mail Service Center Raleigh, North Carolina 27699-1652

Michael Baker

INTERNATIONAL Submission Date: February 2023

This document was printed using 30% recycled paper.

February 28, 2023

Matt Reid, PM NCDEQ, Division of Mitigation Services Asheville Regional Office 2090 U.S. 70 Highway Swannanoa, NC 28778-8211

Subject:

Response to DMS Comments (January 19, 2023) for DRAFT Monitoring Year 1 Report. Blair Creek Stream Mitigation Project, Clay County Hiawassee River Basin: 06020002 DMS Project #100047 DEQ Contract #7415

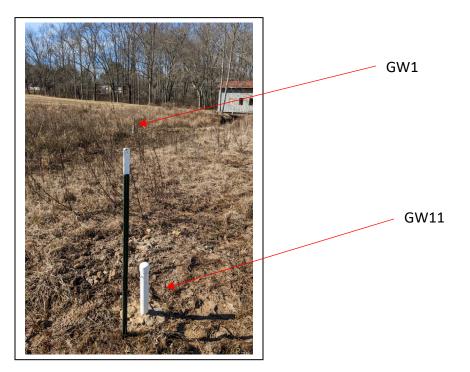
Dear Mr. Reid,

Please find below our responses to the NC Division of Mitigation Services (DMS) review comments dated January 19, 2023, in reference to the Blair Creek Stream Mitigation Project's DRAFT Monitoring Year 1 Report. We have revised the Draft document in response to review comments as outlined below.

- In an effort to identify and resolve property issues early during the monitoring period, please verify that the conservation easement boundary has been walked, marking and signage is up to spec, fencing is intact, and no encroachments have been identified. RESPONSE: The easement boundary has been walked and signage is posted up to specifications. 4 encroachment areas were identified where the property owner mowed a narrow strip within the easement boundary when "bush-hogging" their field. Additional posts and signage were added along with 10' flagged PVC to make the Conservation Easement boundary highly visible during farm activities. These areas have been measured and added to Table 6 Vegetation Conditions Assessment and are depicted on the CCPV in Appendix B. These areas will be monitored and reported on in Monitoring Year 2.
- Report indicates a supplemental planting will occur in the vicinity of vegetation plot 2. Please include supplemental planting information in the MY3 report regarding this effort. Include number, area, species, type (bare root, container, etc.) and include a polygon on the CCPV. If species are selected that are not from the approved mitigation planting list, the IRT will need to be notified in advance.
 RESPONSE: The requested information will be included in the MY2 report and CCPV. All

planted species will be selected based on the approved mitigation planting list.

• CCPV: Please update color codes for vegetation plots, wetland gauges, and flow gauges for meeting/not meeting criteria.


Michael Baker

INTERNATIONAL

RESPONSE: Vegetation plots, wetland gauges, and flow gauges have been color coded for meeting/not meeting criteria. The color of FL-1 or Flow Gauge 1 has not changed as it met criteria and is the only flow gauge on site.

 It was noted in MY0 that GW-1 was installed in a non-representative area for the surrounding wetland reestablishment area. Baker committed to moving the gauge approximately 15-20' farther away from the channel. The gauge location shown on the CCPV appears to be the original location. Please verify that the gauge was moved and update the CCPV accordingly.

RESPONSE: GW-1 was not moved; however, an additional well (GW11) was installed in a more representative location during MY1. The installation did not take place until late in the 2022 growing season, therefore data was not reported in MY1. All future monitoring years will include GW1 and GW11 data. The location of GW11 is shown on the CCPV. The photo below shows GW11 and GW1 is visible in the background.

Two structures were identified in MYO with scour behind the vane arms; Reach 1 log cross vane, sta: 24+75, and Reach 2 log J-hook vane, sta: 23+75. Baker indicated these structures were going to be repaired in MY1. The structure on Reach 2 was identified as Stream Problem Area #1; however, the structure on Reach 1 was not mentioned. Was the structure on Reach 1 repaired? Please update accordingly.

Michael Baker

INTERNATIONAL

RESPONSE: The log vane structure on Reach 1 remains intact. The right bank scour shown in the MYO Comment Letter has filled in with sediment and dense vegetation. At the time of data collection during MY1 the structure was functioning and not in need of repair. We will keep a close watch on this structure during MY2 and make repairs if needed. The grade control rock and log J-hook, SPA #1, on Reach 2 is currently scheduled to be repaired in February 2023 by a contractor. We will provide pictures of this repair once completed and a discussion will be included in the MY2 report. Some bank scour was also identified on a grade control rock and log j-hook on Reach 2. This area is identified as SPA #2 on the CCPV and will be repaired at the same time as SPA #1.

- Table 5 and 6: Please include assessment dates at the top of each table. **RESPONSE:** Assessment dates have been included as requested.
- Table 5 Reach 1: A 15' aggradation segment and 25' scoured/eroding segment is called out • for this reach. These locations should be identified on the CCPV. Please update and include .shp files with digital submission as well. RESPONSE: The 15' aggradation segment has been added to the CCPV as requested. The 25' scour/eroding segment is located on Reach 2 and is represented on the CCPV as SPA-1. These shapefiles have been included with the digital submission as requested.
- Photo-points: In future reports, please include photos of stream problem areas and vegetation problem areas. RESPONSE: In future reports, photos of any stream or vegetation problem areas will be included.
- Table 7: Veg Plot 1 F is missing data in the "planted" column. Please update. RESPONSE: Missing data has been added to the "planted" column as requested.
- Cross-section Graphs: Several of the cross-section graphs do not provide confidence that surveys were conducted correctly. Surveys do not begin and end on cross section pins, elevations are different at end pins, and elevation/lateral errors appear to be present in several sections. Please review all cross-sections and specifically XS9-XS14. RESPONSE: Rebar pins are set at the existing ground elevation and are represented by the first (Left Pin) and last (Right Pin) point of the stationing. End pin stationing and elevation has been corrected and elevations have been reviewed and verified as requested.
- Table 9: Please review MY1 section data. Bankfull elevation based on AB-Bankfull area • should not be the same as MYO data. Please verify other measurements and update calculations as necessary.

RESPONSE: Data has been reviewed and updated as necessary as requested.

Michael Baker

 Table 10: The draft report only contained a graph for Crest Gauge 3. Please include graphs for Crest Gauge 1 and 2. All crest gauge graphs should be included in each monitoring report. Please include the bankfull elevation line on each graph. Graph legend has an orange box indicating Manual. Please revise.

RESPONSE: Graphs have been included and revisions made as requested.

Digital Deliverable Comments

 Wetland gauge data was not included with draft digital deliverables. Please include raw data and spreadsheets used to produce figures with final submittal.
 RESPONSE: Wetland gauge data has been included in the electronic submission files as requested.

As requested, Michael Baker has provided an electronic response letter addressing the DMS comments received and two (2) hardcopies of the FINAL report, and the updated e-submission digital files will be sent via secure ftp link. A full final electronic copy with electronic support files have been included on a USB drive. Please do not hesitate to contact me (Jason.york@mbakerintl.com 828-412-6101) should you have any questions regarding our response submittal.

Sincerely,

ason Gork

Jason York Environmental Scientist

Enclosure: Final MY3 Report Russell Gap Mitigation Project

TABLE OF CONTENTS

1.0	PROJECT SUMMARY	3
1.1		
1.2	GOALS AND OBJECTIVES	
1.3	PROJECT SUCCESS CRITERIA	4
1.4	MONITORING RESULTS AND PROJECT PERFORMANCE	
1.5	TECHNICAL AND METHODOLOGICAL DESCRIPTIONS	5
1.6	References	6

APPENDICES

Appendix	Α	Backgro	und T	Tables and Figures
		Figure	1	Vicinity Map
		Figure	2	Project Asset Map
		Table	1	Project Components and Mitigation Credits
		Table	2	Project Activity and Reporting History
		Table	3	Project Contacts
		Table	4	Project Attributes
Appendix	В	Visual A	ssess	ment Data
		Figure	3	Current Condition Plan View (CCPV) Map
		Table	5	Visual Stream Morphology Stability Assessment
		Table	6	Vegetation Condition Assessment
		Stream S	Statio	n Photo-Points
		Vegetati	on Pl	ot Photographs
		Monitor	ing G	auges and Overbank Photographs
	C	Voqotati	on Pl	ot Data
Appendix	С	vegeiuii	01111	
Appendix	C	Table	7	Planted Stem Counts by Plot and Species
Appendix Appendix	D	Table	7	
		Table	7	Planted Stem Counts by Plot and Species
		Table Stream	7 Geom	Planted Stem Counts by Plot and Species
		Table Stream (Figure	7 Geom 4	Planted Stem Counts by Plot and Species orphology Data Cross-Sections with Annual Overlay
		Table Stream (Figure Table	7 Geom 4 8 9	Planted Stem Counts by Plot and Species orphology Data Cross-Sections with Annual Overlay Baseline Stream Data Summary Cross-Section Morphology Data Summary
Appendix	D	Table Stream (Figure Table Table	7 Geom 4 8 9	Planted Stem Counts by Plot and Species orphology Data Cross-Sections with Annual Overlay Baseline Stream Data Summary Cross-Section Morphology Data Summary
Appendix	D	Table Stream O Figure Table Table Hydrolo	7 Geom 4 8 9 gic D	Planted Stem Counts by Plot and Species orphology Data Cross-Sections with Annual Overlay Baseline Stream Data Summary Cross-Section Morphology Data Summary ata
Appendix	D	Table Stream of Figure Table Table Hydrolo Table	7 Geom 4 8 9 gic D 10	Planted Stem Counts by Plot and Species orphology Data Cross-Sections with Annual Overlay Baseline Stream Data Summary Cross-Section Morphology Data Summary ata Verification of Bankfull Events
Appendix	D	Table Stream O Figure Table Table Hydrolo Table Figure	7 Geom 4 8 9 gic D 10 5	Planted Stem Counts by Plot and Species orphology Data Cross-Sections with Annual Overlay Baseline Stream Data Summary Cross-Section Morphology Data Summary ata Verification of Bankfull Events Wetland Monitoring Well Graphs
Appendix	D	Table Stream O Figure Table Table Hydrolo Table Figure Table	7 Geom 4 8 9 gic D 10 5 11	Planted Stem Counts by Plot and Species orphology Data Cross-Sections with Annual Overlay Baseline Stream Data Summary Cross-Section Morphology Data Summary ata Verification of Bankfull Events Wetland Monitoring Well Graphs Wetland Hydrology Summary Data

1.0 PROJECT SUMMARY

1.1 Project Description

Michael Baker Engineering, Inc. (Michael Baker) restored approximately 4,293 linear feet of existing stream along both the North and South Forks of Blair Creek and below the confluence on Blair Creek itself and enhanced 177 linear feet of an unnamed tributary (UT) to the South Fork. Additionally, the project has restored-by-reestablishment, restored-by-rehabilitation, or enhanced approximately 6.095 total acres of riparian wetlands. The project is located in the Blue Ridge Physiographic Region, within the Broad Basins Level IV ecoregion. The project watershed drains into the Hiwassee River approximately 1.4 miles downstream, ultimately emptying into the Tennessee River. Blair Creek and its tributaries are classified by NCDWR as Class "WS-IV" waters (NCDWR, 2016).

The Blair Creek Mitigation Project (project) is located on five abutting parcels of an active farm in Clay County, North Carolina, approximately 1.5 miles south of the Town of Hayesville as shown on the Project Vicinity Map (Figure 1). Historic agricultural use on the project site has predominantly been for a dairy operation and is currently utilized for row crop and hay production. These activities have negatively impacted both water quality and streambank stability along the project streams. The resulting observed stressors include streambank erosion, sedimentation, excess nutrient input, channel modification, wetland drainage, and the loss of riparian buffers.

The project is being conducted as part of the NCDMS Full Delivery In-Lieu Fee Program and is anticipated to generate a total of 4,363.37 cold stream mitigation credits and 5.772 wetland mitigation credits and will be protected by a 10.02-acre permanent conservation easement (Appendix B).

1.2 Goals and Objectives

The goals of this project are identified below:

- Establishment of geomorphically stable conditions along all project reaches,
- Improvement of water quality by reducing nutrient and sediment inputs,
- Restoration of natural stream and floodplain interactions,
- Restoration and enhancement of riparian wetland functions,
- Restoration and protection of riparian buffer functions and corridor habitat,
- Improvement of in-stream aquatic habitat, and
- Establishment of a permanent conservation easement on the entire project.

To accomplish these goals, the following objectives were identified:

- To restore appropriate bankfull dimensions, remove spoil berms, and/or raise channel beds, by utilizing either a Priority I Restoration approach or an Enhancement Level I approach.
- To construct streams of appropriate dimensions, pattern, and profile in restored reaches, slope stream banks and provide bankfull benches on enhanced streams and utilize bio-engineering to provide long-term stability.
- Construct the correct channel morphology along all stream channels, increasing the number and depth of pools utilizing structures including geo-lifts with brush toe, log vanes/weirs, root wads, and/or J-hooks.

- Raise ground water tables within the buffer through the implementation of Priority I restoration. Wetland vegetation will also be planted.
- Establish riparian buffers at a 30 foot minimum width along all stream reaches, planted with native tree and shrub species.
- Establish a permanent conservation easement restricting land use in perpetuity. This will prevent site disturbance and allow the project to mature and stabilize.

1.3 **Project Success Criteria**

The success criteria and performance standards for the project will follow the NCDMS's templates As-Built Baseline Monitoring Report Format, Data Requirements, and Content Guidance (October 2020), and the Annual Monitoring Report Format, Data Requirements, and Content Guidance (October 2020), and as described in Section 7 of the approved Mitigation Plan. All specific monitoring activities will follow those outlined in detail in Section 8 of the approved Mitigation Plan and will be conducted for a period of 7 years unless otherwise noted.

1.4 Monitoring Results and Project Performance

The Year 1 monitoring survey data of the fifteen permanent cross-sections indicates that these stream sections are geomorphically stable and are within the lateral/vertical stability and in-stream structure performance categories. All reaches are stable and performing as designed despite one Stream Problem Area (SPA1) located at approximately Station 23+75 on Reach 2 where high flows eroded the left bank behind a J-hook structure prior to the establishment of year one vegetation (Table 5 in Appendix B). A second Stream Problem Area (SPA2) is located at approximately Station 24+75 where high flow caused lateral scour on the right bank behind the log vane. Michael Baker is currently working with a contractor to repair the eroded banks and to re-vegetate following completion of the repair in MY2. All planted species will be from the approved planting list. A discussion of these repairs will be included in the MY2 report.

During Year 1 monitoring, the planted acreage performance categories were functioning well overall. The planted stems endured flashy conditions in their first year, with rainfall well above the historic average in February, May, July, and August 2022; however, January, March, April, June, and September 2022 were well below the historic average (see Figure 7). The average density of total planted stems, based on data collected from the 6 permanent and 2 random monitoring plots for the Year 1 monitoring conducted in October and November 2022 was 424 stems per acre (Table 7 in Appendix C). Thus, the Year 1 vegetation data demonstrate that the Site is on track to meet the minimum success interim criteria of 320 trees per acre by the end of Year 3. No vegetation problem areas (VPAs) were identified as exceeding the reportable mapping threshold of 0.1 acres; however, small areas with high mortality will be supplementally planted during MY2 as needed. Vegetation Plot 2 failed to meet success criteria due to a dense infestation of cattails in the wetland area outside of the easement which moved into the plot area and smothered planted stems. Cattails will be manually removed and chemically treated during MY2 and areas impacted by cattails will be replanted with species from the approved planting list and will be discussed in the MY2 report.

During Year 1 monitoring, two separate post-construction bankfull events were observed (see Table 10 in Appendix E and the Overbank Photographs in Appendix B). These events occurred on 3/13/22 and 8/7/2022 as documented through spikes in water levels shown in the data from automated Crest Gauge 3 on R2 (see Table 10). Photographic evidence of debris jams was documented on the right floodplain of lower R1 and against the crest gauge located on the left floodplain of R2 (see Appendix B). Automated Crest Gauges 1 and 2 did not record a bankfull event.

As the observed monthly rainfall data for the project presented in Figure 6 in Appendix E demonstrates, the past 12 months have varied dramatically from month to month as compared to historic average precipitation. A total of 49.56 inches of rainfall was observed for the project, while the region averages 59.49 inches of annual rainfall, a deficit of 9.93 inches. All observed project rainfall was collected from the North Carolina Climate Office Weather Climate Database Legacy System. The rain gauge deployed on site suffered repeated malfunctions during MY1 therefore the data was not reliable. The rain gauge will be repaired and re-deployed during MY2.

During Year 1 monitoring, four of the ten automated groundwater monitoring wells met or exceeded the minimum hydroperiod performance criteria approved in the Mitigation Plan of 12% of the 211-day growing season (24 or more consecutive days); however, two of the ten wells failed to meet performance criteria by one day, one of ten failed to meet performance criteria by two days, and two of ten failed to meet criteria by three days (Table 11). Therefore, we expect these wells to meet performance criteria in future years. One automated flow gauge met or exceeded the minimum 30-day performance criteria during MY1 (Table 12). An additional well was added (MW11) on the left floodplain of R1 as requested by the Division of Mitigation Services. Installation of this additional well took place late in the MY1 growing season therefore MW11 data is not applicable to MY1. MW11 data will be included in the MY2 report.

The easement boundary has been walked and signage is posted up to specifications. Four encroachment areas were identified where the property owner mowed a narrow strip within the easement boundary when "bush-hogging" their field. Additional posts and signage were added along with 10' flagged PVC to make the Conservation Easement boundary highly visible during farm activities. These areas have been measured and included in Table 6 – Vegetation Conditions Assessment and are depicted on the CCPV in Appendix B. These areas will be monitored and reported on in Monitoring Year 2.

Summary information/data related to the Site and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report Appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report and in the Mitigation Plan available on the DMS website. Any raw data supporting the tables and figures in the Appendices is available from DMS upon request.

This report documents the successful completion of the Year 1 monitoring activities for the postconstruction monitoring period.

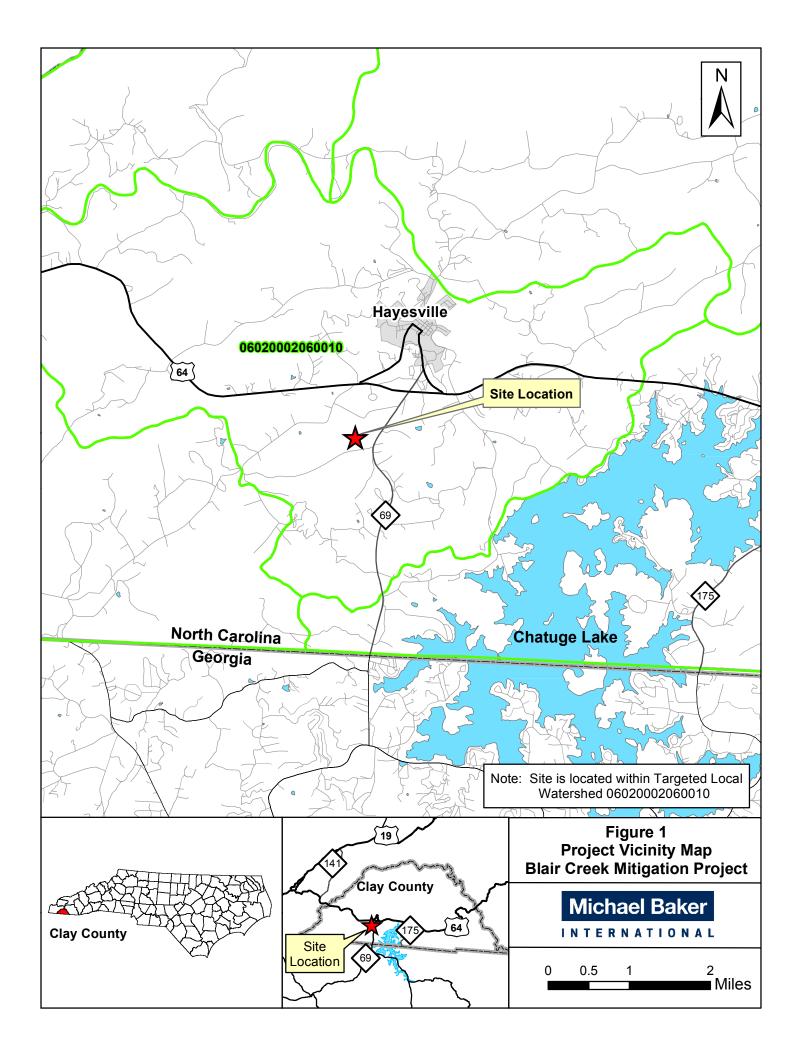
1.5 Technical and Methodological Descriptions

Stream survey data was collected to a minimum of Class C Vertical and Class A Horizontal Accuracy using a Leica TS06 Total Station and was georeferenced to the NAD83 State Plane Coordinate System, FIPS3200 in US Survey Feet, which was derived from the As-built Survey. The survey data from the permanent project cross-sections were collected and classified using the Rosgen Stream Classification System to confirm design stream type (Rosgen 1994).

The six vegetation-monitoring quadrants (plots) were installed across the site in accordance with the CVS-DMS Protocol for Recording Vegetation, Version 4.1 (Lee 2007) and the data collected from each was input into the DMS Veg Table Production Tool (2021).

Ten automated groundwater monitoring wells were installed in the floodplain following USACE protocols (USACE 2005). The gauges themselves, both flow and groundwater gauges, are all Van Essen brand Baro-Diver data loggers.

All observed project rainfall was collected from the North Carolina Climate Office Weather Climate Database Legacy System.


The specific locations of monitoring features, such as vegetation plots, permanent cross-sections, reference photograph stations, and crest gauges, are shown on the CCPV map found in Appendix B.

1.6 References

- Carolina Vegetation Survey (CVS) and NC Division of Mitigation Services (DMS). CVS-DMS Data Entry Tool v. 2.3.1. University of North Carolina, Raleigh, NC. 2012.
- Lee, M., Peet R., Roberts, S., Wentworth, T. 2007. CVS-DMS Protocol for Recording Vegetation, Version 4.1.
- North Carolina Division of Mitigation Services. 2020. Annual Monitoring Report Format, Data Requirements, and Content Guidance October 2020. NC Department of Environmental Quality. Raleigh, NC.
- North Carolina Interagency Review Team (NCIRT). 2020. Guidance document "Wilmington District Stream and Wetland Compensatory Mitigation Update". October 2020
- Rosgen, D.L. 1994. A Classification of Natural Rivers. Catena 22:169-199.
- Rosgen, D.L. 1996. Applied River Morphology. Wildlands Hydrology. Pagosa Springs, CO.
- United States Army Corps of Engineers (USACE). 2005. "Technical Standard for Water-Table Monitoring of Potential Wetland Sites," WRAP Technical Notes Collection (ERDC TN-WRAP-05-2), U.S. Army Engineer Research and Development Center. Vicksburg, MS.

APPENDIX A

Background Tables and Figures

			State And a second	CAMPA - COMPANY					
		Est h	seres in					Conservation I	asement
N			· · · · · · ·	yRa				-	
		Come St	Mar J				Stre	am Centerlines	by Approach
			Contra a					 Restoration 	
		NY IT	The second	N	2.0-4			- Enhancement	Level II
	S. Cart		Mar -	145	1990			W1: Wetland F	Restoration: Re-establishment (1:1)
				T. W.L. IS	×	each R1		77	Restoration: Rehabilitation (1.5:1)
		No.				each Ki			
SON /									Enhancement (2:1)
	100				1000		il.		
~						ALL IN		State 1	
12 h	AC-		Come in the				SHE.		
The	Cr in			A.		YAD			and the second
		free and		15	1 .			×180	
	Mar and a			1				1	
Non a	and the			- Alla	1		11	and an a	11/1 Marine
Stream Mit	tigation Feat	ures			and the same little			Charles 2	1 Miles
Reach	Approach		h (ft) Ratio	o (X:1)	Credits			715%	To the second second
R1	R	2,699		1	2699.76			1 marsh	
R2	R	1,473		1	1473.91		al		
R3	R	118.	-	1	118.94		AKA I		
UT1	EII EII	176. it 4,469		2.5	70.76		EK/	T. Marker	
Total Total	Restoratio				4,292.61	- BA			E .
Er	nhancement				70.76				
				Credits	4,363.37				
	A STATISTICS	Ser Ma	1. 1. 1. 1.	12					
Wetland M	litigation Fea		100		-	Ser.	in the first		A CONTRACT OF THE OWNER
	roach	Area (ac)	Ratio (X:1)	Credits	-				Reach R3
Restoration					A	1/1-2-	K P		
Reestablish	nment (W1)	5.218	1.000	5.218		100	internal .	a contra	
Restoration	n bv							Co->	
Rehabilitat		0.693	1.500	0.462		1 per la	Stall St	2 1 3 2 3 3	12 Comma de la
Enhanceme		0.184	2.000	0.092		Reach F	22	· 1	
	()		Total Credits						
New yours		and the second	Total creates	3.772		a state			
			11	1-2	and a star	1 200			
				. Starting	1. Mar	116		all the	he had been a for the second s
			alla	M			the a	Cherry Roa	ad a state of
and the second	- They a	1	Julaita 2			Contraction of the		Gilenty ass	
11	- Maning	**** 管管				- TOPP	E		
	集合行为	Star Jose	- 24		Rea	ach UT1		Carl Carlos	
	1	1	And A	Stark 1			1	A MARINE	
	16		the second	Willia a	À		A COL	the states the	The second s
A. S.		d	- ANT		8.18	Sel Asia			ALL CALLS AND ALL CALLS
Aerial Pl	hotograph	Source	NC OneMa	ap, NC (center f	or Geogr	aphie in	formation and A	nalysis
	STA SA	新兴的大学供爱							an an tha an an tha an an tha an
			North Ca						Figure 2: Project
Mich	ael Ba	ker	Divisio Mitigation		. 0	125	250	500 Feet	Asset and Credit Map Blair Creek Mitigation Project
INTER	NATIO	NAL	DMS Proj. N						Clay County, NC
		-	2						

Table 1.0 Project Components and Mitigation CreditsBlair Creek Mitigation Project - NCDMS Project No. 100047

Project Component (reach ID, etc.)	Wetland Position and HydroType	Existing Footage or Acreage	Stationing	As-Built Restored Footage'	Mitigation Plan Designed Footage	Restoration Level	Approach Priority Level	Mitigation Ratio (X:1)	Mitigation Plan Credits ²
Reach 1		2,399	10+00 - 2501.60, 2531.66 - 3771.92	2,699.76	2,741.86	R	P1	1.0	2,699.760
Reach 2		1,468	09+99.88 - 13+72.39, 14+20.16 - 2555.18	1,473.91	1,507.53	R	P1	1.0	1,473.910
Reach 3		185	25+55.18 - 26+88.82	118.94	133.64	R	P1	1.0	118.940
Reach UT1		195	10+14.97 - 11+88.00	176.9	173.03	EII	-	2.5	70.760
Wetland 1		5.218		5.218	5.217	R	Re-establishment	1.0	5.218
Wetland 2		0.693		0.693	0.691	R	Rehabilitation	1.5	0.462
Wetland 3		0.184		0.184	0.179	Е	Enhancement	2.0	0.092

¹ All stream stationing and restored footage numbers reported here and shown in the as-built plan sheets use *thalweg* survey values and have had easement breaks removed.

² Credits reported here are derived from the design lengths as taken from the approved mitigation plan Table 11.1

Table 1.1 As-Built Centerline Length and Area Summations by Mitigation Category

Restoration Level	Stream (linear feet)	Riparia	n Wetland (acres)	Non-riparian Wetland	Credited Buffer (ft ²)	
	Sureani (inicai ioci)	Riverine	Non-Riverine	(acres)	created Burier (it)	
Restoration	4,383					
Enhancement I						
Enhancement II	173					
Re-establishment		5.217				
Rehabilitation		0.691				
Wetland Enhancement		0.179				
Creation						
Preservation						
High Quality Pres						

Table 1.2

Overall Assets Summary

Asset Category	Overall Credits
Stream (cool)	4,363.370
RP Wetland	5.772
NR Wetland	
Buffer	

Table 2. Project Activity and Reporting HistoryBlair Creek Mitigation Project - NCDMS Project No. 100047

Elapsed Time Since grading complete: All Planting Completed in February 2022 Elapsed Time Since planting complete:	1 year 10 months	
Number of Reporting Years ¹ :	1	
Activity or Deliverable	Data Collection Complete	Completion or Delivery
Institution date	N/A	Jan-22
404 permit date	N/A	Jan-21
Mitigation Plan	N/A	May-21
Final Design – Construction Plans	N/A	Dec-21
Construction Grading Completed	1/22/2022	Jan-22
As-Built Survey	Jan-22	Jan-22
Livestake and Bareroot Planting Completed	Feb-22	Feb-22
As-Built Stream Survey	Feb-22	Feb-22
As-Built Vegetation Monitoring	Mar-22	Apr-22
As-Built Baseline Monitoring Report (MY0)	Mar-22	May-22
Year 1 Stream Survey	Oct-22	N/A
Year 1 Vegetation Monitoring	Oct-22	N/A
Year 1 Monitoring	Nov-22	Dec-22
Year 2 Monitoring (anticipated)	Oct-23	Dec-23
Year 3 Monitoring (anticipated)	Oct-24	Dec-24
Year 4 Monitoring (anticipated)	Oct-25	Dec-25

Oct-26

Oct-27

Oct-28

Dec-26

Dec-27

Dec-28

 1 = The number of monitoring reports excluding the as-built/baseline report

Year 5 Monitoring (anticipated)

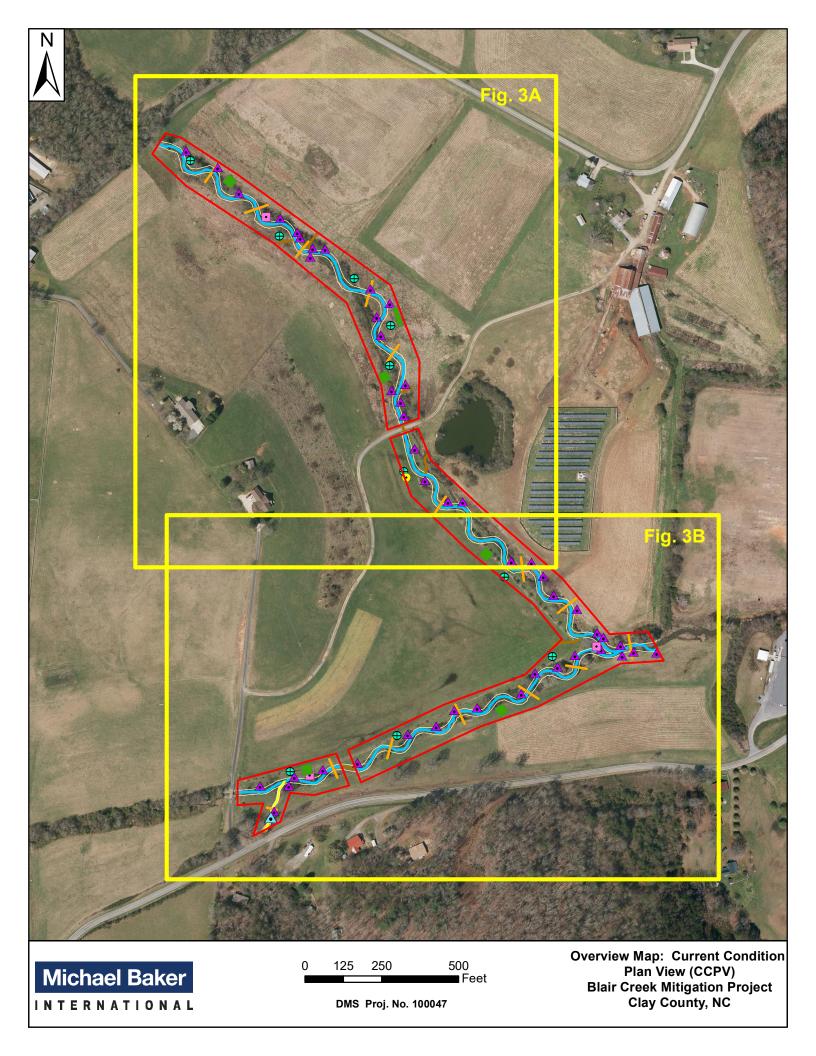
Year 6 Monitoring (anticipoated)

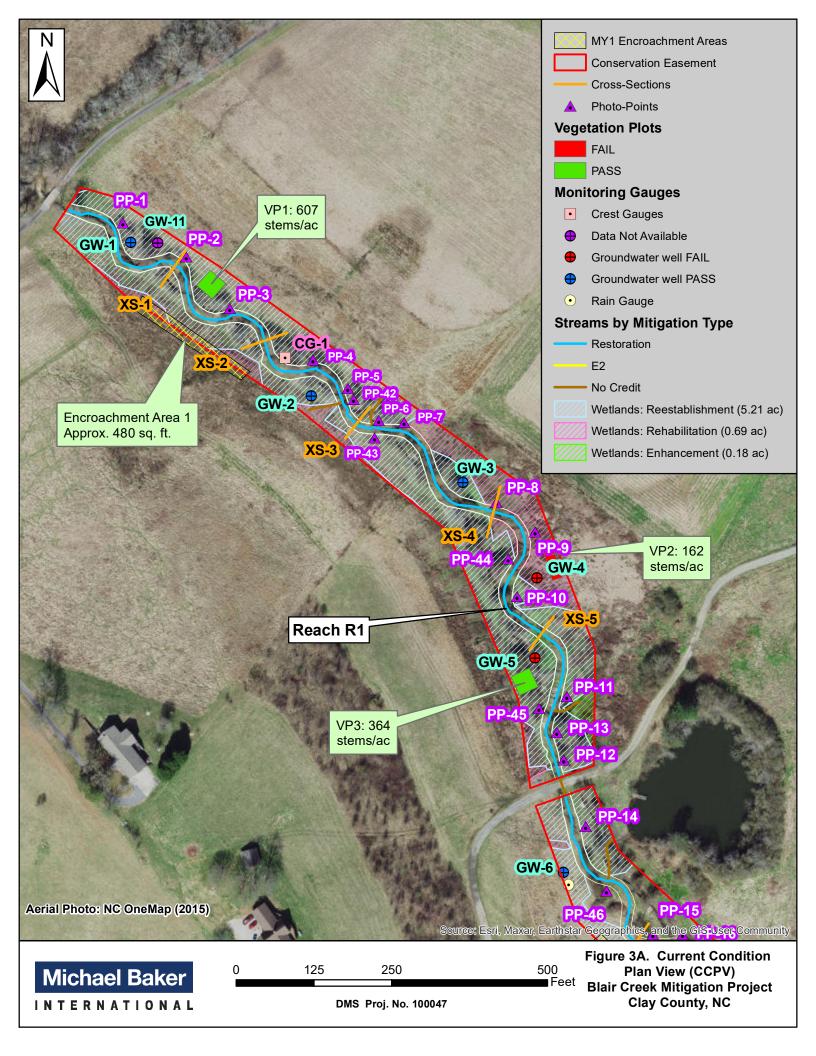
Year 7 Monitoring (anticipated)

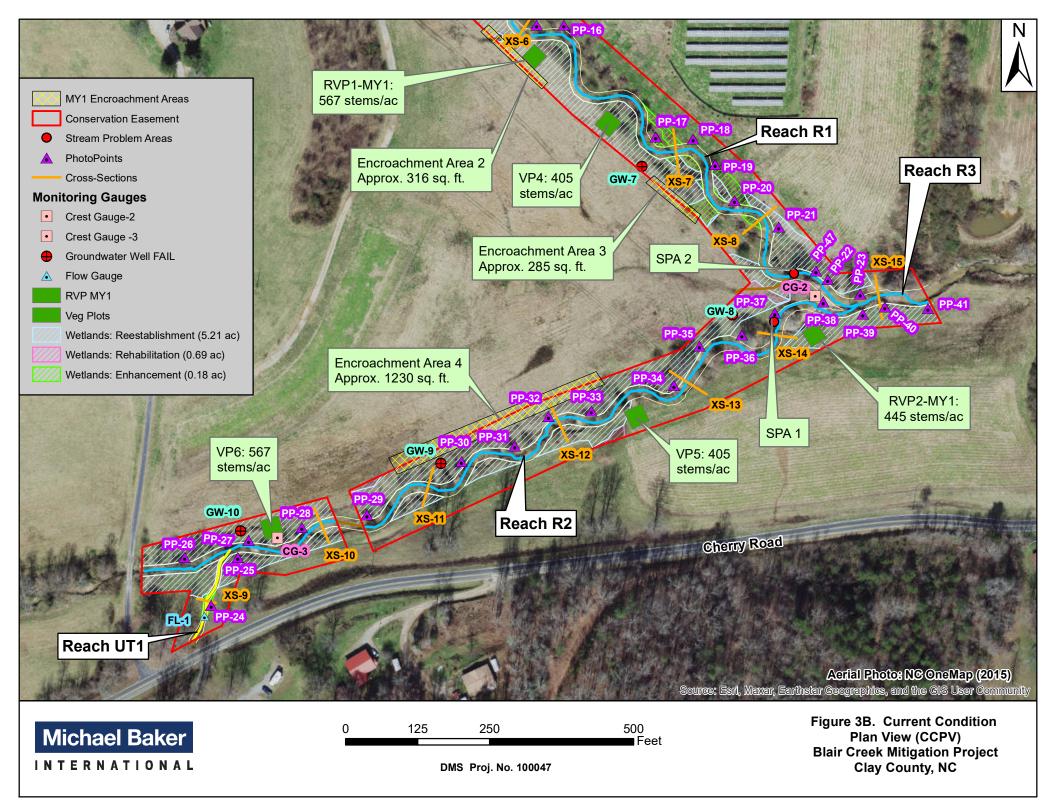
Table 3. Project Contacts	
Blair Creek Mitigation Project - NCDMS Project No. 100047	

Designer	8000 Regency Parkway, Suite 600				
	Cary, NC 27518				
Michael Baker Engineering, Inc.	Contact:				
6 6/	Katie McKeithan, Tel. 919-418-5703				
Construction Contractor	5616 Coble Church Rd				
	Julian, NC 27283				
KBS Earthworks, Inc.	Contact:				
	Kory Strader, Tel. 336-362-0289				
Survey Contractor	88 Central Avenue				
	Asheville, NC 28801				
Kee Mapping and Surveying	Contact:				
	Brad Kee, Tel. 828-575-9021				
Planting Contractor					
	215 Moonridge Road				
Ripple EcoSolutions	Chapel Hill, NC 27516				
	Contact: George Morris, Tel. 919-818-3984				
Seeding Contractor	5616 Coble Church Rd				
	Julian, NC 27283				
KBS Earthworks, Inc.	Contact:				
	Kory Strader, Tel. 336-362-0289				
Seed Mix Sources					
	5204 Highgreen Court,				
Green Resources	Colfax, NC 27235				
	Telephone: 336-855-6363				
Nursery Stock Suppliers	825 Maude Etter Road, McMinnville, TN 37110				
Dykes and Son Nursery	Telephone: 919-742-1200				
Native Forest Nursery	11306 US-441, Chatswort, GA 30705				
	Telephone: 336-855-6363				
Monitoring Performers					
	8000 Regency Parkway, Suite 600				
Michael Baker Engineering, Inc.	Michael Baker Engineering, Inc. Cary, NC 27518				
Stream Monitoring POC	Jason York, Tel. 828-380-0118				
Vegetation Monitoring POC	Jason York, Tel. 828-380-0119				

Table 4. Project Attributes for Existing Conditions


Blair Creek Mitigation Project	. NODINI	Project Infor						
Project Name		Blair Creek Stream Mitigation Project						
County		Clay						
Project Area (acres) 10.02								
Project Coordinates (lat. and long	,)		35.026069 N,					
	,	t Watershed Sumr						
Physiographic Province	3	1	ge, Level IV; Broad	d Basins				
River Basin		Hiawassee						
USGS Hydrologic Unit 8-digit	6020002	USGS Hydrologic	Unit 14-digit	06020002	2-060010			
DWR Sub-basin			04-0	5-01				
Project Drainage Area (acres)		1,862 arcres / 2.94	square miles (at co	onfluence in Blair C	Creek)			
Stream Temperature Regime		cool	1		,			
Project Drainage Area Percentage	e of							
Impervious Area		1.7% impervious a	irea					
USGS National Land Cover Data (NLCD) for 2011	base	<u>^</u>	(predominantly rura nd pasture/hay, 1.2%	,				
		Reach Summary I	nformation					
Parameters		Reach 1	Reach 2	Reach 3	TTP1			
		(North Fork)	(South Fork)	(Blair Creek)	UT1			
Existing length of reach (linear fe	eet)	2,399	1468	185	195			
Valley confinement (Confined, m confined, unconfined)	oderately	Unconfined	Moderately Confined	Moderately Confined	Moderately Confined			
Drainage area (acres)		983	880	1864	22			
Perennial, Intermittent, Ephemera	ıl	Perennial	Perennial	Perennial	Intermittent			
NCDWR Water Quality Classific	ation	WS-IV	WS-IV	WS-IV	N/A			
Stream Classification (existing / J	proposed)	B-E4/C4	E4/C4	F4/C4	B/B			
Evolutionary trend (Simon)		IV – Degradation and Widening	III – Degradation	IV – Aggradation and Widening	III – Degrading			
FEMA classification		Zone X	Zone X	Zone AE	Zone X			
		Regulatory Cons	iderations					
Parameters		Applicable?	Resolved?		ng Docs?			
Water of the United States - Sect		Yes	Yes		CN			
Water of the United States - Sect	on 401	Yes	Yes	PCN				
Endangered Species Act		Yes	Yes	Categorical Exclusion				
Historic Preservation Act		Yes	Yes		l Exclusion			
Coastal Zone Management Act (CAMA)	No	N/A		/A			
FEMA Floodplain Compliance		No	N/A	N	/A			
Essential Fisheries Habitat	No	N/A	N/A					


Blair Creek Mitigation Project – NCDMS Project No. 100047


MICHAEL BAKER ENGINEERING, INC. BLAIR CREEK MITIGATION PROJECT (DMS #100047) YEAR 1 MONITORING REPORT

APPENDIX B

Visual Assessment Data

Table 5. Visual Stream Morphology Stability Assessment

Blair Creek Mitigation Project - NCDMS Project No. 100047 - All Reaches Assessed in November 2022

Reach ID: Reach 1							
Assessed Length (LF):	2,741.86						
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number per As built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performin as Intended
	1.Vertical Stability	 Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include poin bars) 			1	15	99.5%
	_	2. Degradation - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. Texture Substrate - Riffle maintains coarser substrate	36	36	0.00	0.00	100%
		1. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth≥ 1.5)	36	36			100%
1. Bed	3. Meander Pool Condition	2. Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstream riffle)	27	27			100%
		1. Thalweg centering at upstream of meander bend (Run)	27	27			100%
	4. Thalweg Position	2. Thalweg centering at downstream of meander bend (Glide)	27	27			100%
	•						
	1. Scoured/Eroding	Bank lacking vegetative cover due to active scour and erosion		0	0	0	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting is expected		0	0	0	100%
	3. Mass Wasting	Banks slumping, caving or collapse		0	0	0	100%
				Totals	0	0	100%
3. Engineering Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	31	31			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	10	10			100%
	2a. Piping	Structures lacking any substantial flow underneath or around sills or arms	30	31			97%
	3. Bank Position	Bank erosion within the structures extent of influencatoes not exceed 15%	30	31			97%
	4. Habitat	Pool forming structures maintaining - Max Pool Depth/Mean Bankfull Depth ratiœ 1.5. Rootwads/logs providing some cover at low flow	14	14			100%

Table 5. Visual Stream Morphology Stability Assessment Blair Creek Mitigation Project – NCDMS Project No. 100047

Reach ID: Reach 2							
Assessed Length (LF):	1,507.53						
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number per As built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performin as Intended
	1.Vertical Stability	 Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include poin bars) 			0	0	100%
		2. Degradation - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. Texture Substrate - Riffle maintains coarser substrate	24	24	0.00	0.00	100%
1. Bed		1. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth≥ 1.5)	26	26			100%
	3. Meander Pool Condition	 Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstrear riffle) 	26	26			100%
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	26	26			100%
	4. Thatweg Postuon	2. Thalweg centering at downstream of meander bend (Glide)	26	26			100%
	1. Scoured/Eroding	Bank lacking vegetative cover due to active scour and erosion		0	1	25	99%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting is expected		0	0	0	100%
2. Bank	3. Mass Wasting	Banks slumping, caving or collapse		0	0	0	100%
				Totals	0	0	100%
	·						
3. Engineering Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	21	21			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	7	7			100%
	2a. Piping	Structures lacking any substantial flow underneath or around sills or arms	20	21			95%
	3. Bank Position	Bank erosion within the structures extent of influencadoes not exceed 15%	20	21			95%
	4. Habitat	Pool forming structures maintaining - Max Pool Depth/Mean Bankfull Depth rati ≥ 1.5. Rootwads/logs providing some cover at low flov	7	7			100%

Table 5. Visual Stream Morphology Stability Assessment

Blair Creek Mitigation Project - NCDMS Project No. 100047 - All Reaches Assessed in November 2022

Reach ID: Reach 3							
Assessed Length (LF):	133.64						
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number per As built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performin as Intended
1. Bed	1.Vertical Stability	 Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include poil bars) 			0	0	100%
		2. Degradation - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. Texture Substrate - Riffle maintains coarser substrate	2	2	0.00	0.00	100%
	3. Meander Pool Condition	1. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth≥1.5)	3	3			100%
		 Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstrean riffle) 	3	3			100%
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	3	3			100%
		2. Thalweg centering at downstream of meander bend (Glide)	3	3			100%
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover due to active scour and erosion		0	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting is expected		0	0	0	100%
	3. Mass Wasting	Banks slumping, caving or collapse		0	0	0	100%
				Totals	0	0	100%
							1
3. Engineering Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	1	1			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	1	1			100%
	2a. Piping	Structures lacking any substantial flow underneath or around sills or arms	1	1			100%
	3. Bank Position	Bank erosion within the structures extent of influencaloes not exceed 15%	1	1			100%
	4. Habitat	Pool forming structures maintaining - Max Pool Depth/Mean Bankfull Depth ratio 1.5. Rootwads/logs providing some cover at low flov	1	1			100%

Table 5. Visual Stream Morphology Stability Assessment Blair Creek Mitigation Project – NCDMS Project No. 100047

Reach ID: Reach UT1							
Assessed Length (LF):	173.03						
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number per As built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performin as Intended
1. Bed	1.Vertical Stability	 Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include poin bars) 			0	0	100%
		2. Degradation - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. Texture Substrate - Riffle maintains coarser substrate	7	7	0.00	0.00	100%
	3. Meander Pool Condition	1. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth≥1.5) Plunge Pools	7	7			100%
		 Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstreau riffle) 	7	7			100%
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	N/A	N/A			100%
		2. Thalweg centering at downstream of meander bend (Glide)	N/A	N/A			100%
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover due to active scour and erosion		0	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting is expected		0	0	0	100%
	3. Mass Wasting	Banks slumping, caving or collapse		0	0	0	100%
				Totals	0	0	100%
3. Engineering Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	7	7			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	7	7			100%
	2a. Piping	Structures lacking any substantial flow underneath or around sills or arms	7	7			100%
	3. Bank Position	Bank erosion within the structures extent of influencatoes not exceed 15%	7	7			100%
	4. Habitat	Pool forming structures maintaining - Max Pool Depth/Mean Bankfull Depth ratie 1.5. Rootwads/logs providing some cover at low flov	7	7			100%

Table 6. Vegetation Conditions Assessment

Blair Creek Mitigation Project - NCDMS Project No. 100047 - Vegetation Assessed in November 2022

Planted Acreage: 8.3						
Vegetation Category	Defintions	Mapping Threshold (acres)	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas *	Very limited cover both woody and herbaceous material.	0.1 acres	N/A	0	0.00	0.0%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1 acres	N/A	0	0.00	0.0%
	Total					
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems or a size class that are obviously small given the monitoring year.	0.25 acres	N/A	0	0.00	0.0%
			Cumulative Total			
Easement Acreage: 8.3				<u>.</u>		
Vegetation Category	Defintions	Mapping Threshold	CCPV Depiction	Number of Points	Combined Acreage	% of Planted Acreage
4. Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale)	1000 ft ²	Green Hatching	0	0.00	0.0%
5. Easement Encroachment Areas	Areas or points (if too small to render as polygons at map scale)	577 ft ²	Yellow Polygon	4	0.05	0.7%

PP-1: R1 Upstream, Station 10+75-Begin R1

PP-3: R1, Upstream, Station 13+50

PP-5: R1, Upstream, Station 16+00

PP-2: R1, Upstream, Station 12+25

PP-4: R1, Upstream, Station 15+50

PP-6: R1, Upstream, Station 17+00

PP-7: R1 Upstream, Station 17+40

PP-9: R1, Upstream, Station 20+20

PP-11: R1, Upstream Station 23+75

PP-8: R1, Upstream, Station 19+50

PP-10: R1, Upstream, Station 21+75

PP-12: R1, Upstream, Station 24+60

PP-13: R1, Downstream, Station 24+25- Culvert

PP-15: R1, Upstream, Station 28+00

PP-17: R1, Upstream, Station 31+75

PP-14: R1, Upstream, Station 25+60- Culvert

PP-16: R1, Upstream, Station 28+60

PP-18: R1, Upstream, Station 32+25

PP-19: R1, Upstream, Station 32+75

PP-21: R1, Upstream, Station 34+65

PP-23: R1, Upstream, Station 37+00 – End R1

PP-20: R1, Upstream, Station 33+75

PP-22: R1, Upstream, Station 36+75

PP-24: UT1, Upstream, Station 10+60

PP-25: UT1, Upstream, Station 11+85- Confluence with R2

PP-27: R2, Upstream, Station 11+60

PP-29: R2, Upstream, Station 12+25

PP-26: R2, Upstream, Station 10+50- Begin R2

PP-28: R2, Upstream, Station 13+51

PP-30: R2, Upstream, Station 16+50

PP-31: R2, Upstream, Station 17+40

PP-33: R2, Upstream, Station 19+15

PP-35: R2, Upstream, Station 21+75

PP-32: R2, Upstream, Station 18+40

PP-34: R2, Upstream at Station 20+80

PP-36: R2, Upstream, Station 22+30

PP-37: R2, Upstream, Station 23+50

PP-39: R2, Upstream, Station 25+20- Confluence with R1

PP-41: R3, view upstream at Station 10+80- End R3

PP-38: R2, Upstream, Station 24+60

PP-40: R3, Upstream, Station 25+50- Begin R3

PP-42: R1, Swale on Right Floodplain, Station 16+25

PP-43: R1, Swale on Left Floodplain, Station 17+00

PP-45: R1, Swale on Left Floodplain, Station 24+00

PP-47: R1, Swale on Right Floodplain, Station 36+40

PP-44: R1, Swale on Left Floodplain, Station 20+70

PP-46: R1, Overflow Channel on Left Floodplain, Station 26+75

Blair Creek: Vegetation Plot Photographs NCDMS Project No. 100047

Vegetation Plot #1: Photo taken September 21, 2022

Vegetation Plot #3: Photo taken September 21, 2022

Vegetation Plot #5: Photo taken September 21, 2022

Vegetation Plot #2: Photo taken November 22, 2022

Vegetation Plot #4: Photo taken September 21, 2022

Vegetation Plot #6: Photo taken September 21, 2022

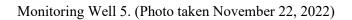
Blair Creek: Vegetation Plot Photographs NCDMS Project No. 100047

Random Vegetation Plot #1: Photo taken November 22, 2022

Random Vegetation Plot #2: Photo taken November 22, 2022

Monitoring Well 1. (Photo taken November 22, 2022)

Monitoring Well 3. (Photo taken November 22, 2022)



Monitoring Well 2. (Photo taken November 22, 2022)

Monitoring Well 4. (Photo taken November 22, 2022)

Monitoring Well 6. (Photo taken November 22, 2022)

Monitoring Gauges and Overbank Photographs

Monitoring Well 7. (Photo taken November 22, 2022)

Monitoring Well 9. (Photo taken November 22, 2022)

Monitoring Well 8. (Photo taken November 22, 2022)

Monitoring Well 10. (Photo taken November 22, 2022)

Crest Gauge 1. Reach 1 (Photo taken November 22, 2022)

Crest Gauge 2. Confluence Reach 1&2 (Photo taken November 22, 2022)

Monitoring Gauges and Overbank Photographs

Crest Gauge 3. (Photo taken November 22, 2022)

Overbank evidence. Debris in lower Reach 1 floodplain. (Photo taken July 1, 2022)

Overbank evidence. Debris jam on Crest Gauge 3 Reach 2 Left floodplain. (Photo taken November 22, 2022)

Flow Gauge 1. UT1 (Photo taken November 22, 2022)

Overbank evidence. Debris in lower Reach 1 floodplain (Photo taken July 1, 2022)

APPENDIX C

Vegetation Plot Data

Planted Acreage	8.3
Date of Initial Plant	2022-02-10
Date(s) of Supplemental Plant(s)	NA
Date(s) Mowing	2022-11-22
Date of Current Survey	2022-11-22
Plot size (ACRES)	0.0247

	Scientific Name	Common Name	Tree/S	Indicator	Veg P	lot 1 F	Veg P	lot 2 F	Veg P	lot 3 F	Veg P	lot 4 F	Veg P	lot 5 F	Veg P	lot 6 F	Veg Plot 3 R	Veg Plot 4 R
	Selentine Hame	common reality	hrub	Status	Planted	Total	Planted	Total	Planted	Total	Planted	Total	Planted	Total	Planted	Total	Total	Total
	Acer negundo	boxelder	Tree	FAC					1	1							4	
	Acer saccharinum	silver maple	Tree	FACW	1	1			3	3	1	1					1	
	Alnus serrulata	hazel alder	Tree	OBL					1	1					1	1		
	Aronia arbutifolia	red chokeberry	Shrub	FACW							1	1						
	Betula alleghaniensis	yellow birch	Tree	FAC									2	2				
	Betula lenta	sweet birch	Tree	FACU														2
	Betula nigra	river birch	Tree	FACW	2	2	1	1			3	3	2	2	3	3	2	2
Canadan	Carpinus caroliniana	American hornbeam	Tree	FAC	2	2			1	1			4	4			1	
Species Included in	Cephalanthus occidentalis	common buttonbush	Shrub	OBL			2	2									1	1
Approved	Cornus amomum	silky dogwood	Shrub	FACW	4	4									2	2	2	
Mitigation Plan	Diospyros virginiana	common persimmon	Tree	FAC					1	1								
initigation rian	Fraxinus pennsylvanica	green ash	Tree	FACW	1	1			1	1								
	Hamamelis virginiana	American witchhazel	Tree	FACU													1	
	llex verticillata	common winterberry	Tree	FACW											2	2		
	Lindera benzoin	northern spicebush	Tree	FAC											1	1		
	Liriodendron tulipifera	tuliptree	Tree	FACU											1	1		
	Nyssa sylvatica	blackgum	Tree	FAC													1	
	Platanus occidentalis	American sycamore	Tree	FACW	3	3					3	3			3	3	1	1
	Quercus falcata	southern red oak	Tree	FACU														1
	Quercus imbricaria	shingle oak	Tree	FAC	1	1	1	1	1	1	2	2	1	1				1
	Quercus phellos	willow oak	Tree	FAC									1	1				1
	Salix nigra	black willow	Tree	OBL														2
	Ulmus americana	American elm	Tree	FACW	1	1									1	1		
Sum	Performance Standard				0	15	4	4	9	9	10	10	10	10	14	14	14	11
							•	•	•	•	•	•		•	•		•	
Post Mitigation	Quercus lyrata	overcup oak	Tree	OBL					1	1	1	1	1	1	1			
Plan Species	Quercus michauxii	swamp chestnut oak	Tree	FACW		1			2	2	1	1						
Sum	Proposed Standard		1		15	15	4	4	9	9	10	10	10	10	14	14	14	11
	·	•															·	
	Current Year Stem	Count				15		4		9		10		10		14	14	11
	Stems/Acre		1			607		162		364		405		405		567	567	445
Mitigation Plan	Species Cour					8		3		7		5		5		8	9	8
Performance	Dominant Species Com					25		50		25		25		40		21	29	18
Standard	Average Plot Heig					1		3		1		1		1		1	2	2
1 -	% Invasives					0		0		0		0		0		0	0	0
	Current Year Stem	Count	1			15		4		9	1	10	1	10	1	14	14	11
Post Mitigation	Stems/Acre					607		162		364	<u> </u>	405		405	<u> </u>	567	567	445
Post Mitigation Plan	Species Cour					8		3		7						8	9	8
Performance	Dominant Species Com					25		50		25		25		40		21	29	18
Standard	Average Plot Heig					1		3		1		1		40		1	23	2
	% Invasives					0		0		0		0		0		0	0	0
	% Invasives		1			0		U		0		0		0		0	0	0

1). Bolded species are proposed for the current monitoring year, italicized species are not approved, and a regular font indicates that the species has been approved.

2). The "Species Included in Approved Mitigation Plan" section contains only those species that were included in the original approved mitigation plan. The "Post Mitigation Plan Species" section includes species that are being proposed through a mitigation plan addendum for the current monitoring year (bolded), species that have been approved in prior monitoring years through a mitigation plan addendum (regular font), and species that are not approved (italicized).

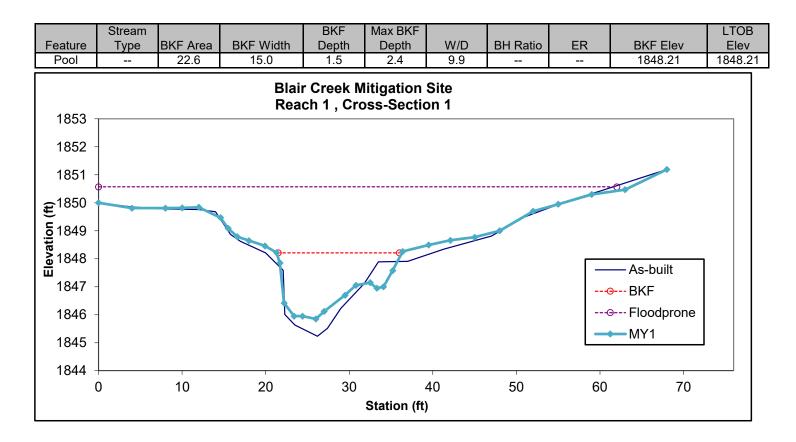
3). The "Mitigation Plan Performance Standard" section is derived only from stems included in the original mitigation plan, whereas the "Post Mitigation Plan Performance Standard" includes data from mitigation plan approved, post mitigation plan approved, and proposed stems.

		V	egetation Pe	rformance St	andards Sun	nmary Table						
		Ve	eg Plot 1 F			Veg P	lot 2 F			Veg P	lot 3 F	
	Stems /Ac.	Av. Ht. (ft)	# Species	% Invasives	Stems/Ac.	Av. Ht. (ft)	# Species	% Invasives	Stems/Ac.	Av. Ht. (ft)	# Species	% Invasives
Monitoring Year 7												
Monitoring Year 5												
Monitoring Year 3												
Monitoring Year 2												
Monitoring Year 1	607		8	0	162		3	0	364		7	0
Monitoring Year 0	769		8	0	729		11	0	648		11	0
		Ve	eg Plot 4 F			Veg P	lot 5 F	•		Veg P	lot 6 F	
	Stems /Ac.	Av. Ht. (ft)	# Species	% Invasives	Stems/Ac.	Av. Ht. (ft)	# Species	% Invasives	Stems/Ac.	Av. Ht. (ft)	# Species	% Invasives
Monitoring Year 7												
Monitoring Year 5												
Monitoring Year 3												
Monitoring Year 2												
Monitoring Year 1	405		5	0	405		5	0	567		8	0
Monitoring Year 0	688		9	0	688		9	0	729		9	0
		Veg P	lot Group 1 R			Veg Plot	Group 2 R					
	Stems /Ac.	Av. Ht. (ft)	# Species	% Invasives	Stems/Ac.	Av. Ht. (ft)	# Species	% Invasives	Project Stems	s per Acre = 424	1	
Monitoring Year 7												
Monitoring Year 5									1			
Monitoring Year 3									1			
Monitoring Year 2									1			
Monitoring Year 1	567		9	0	445		8	0				
Monitoring Year 0												

*Each monitoring year represents a different plot for the random vegetation plot "groups". Random plots are denoted with an R, and fixed plots with an F.

APPENDIX D

Stream Geomorphology Data

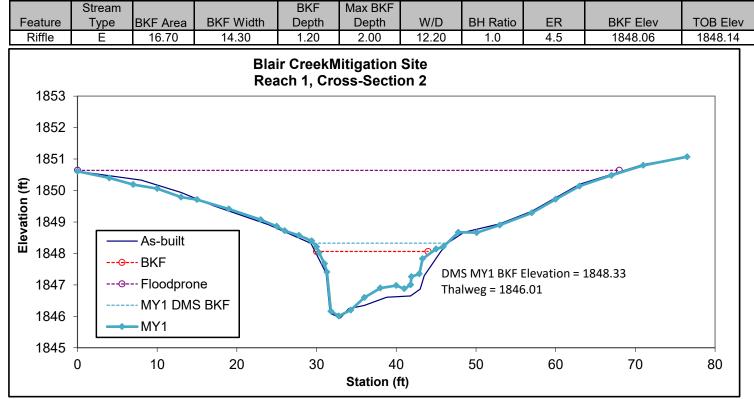


Year 1 Survey Data Collected: October 2022

Restoration

Looking at the Right Bank

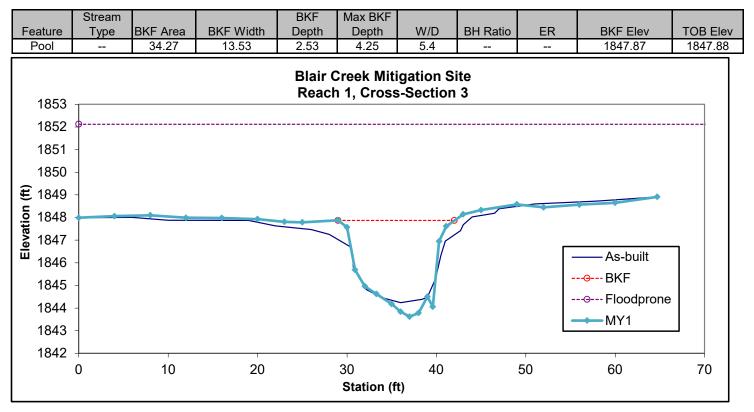
MICHAEL BAKER ENGINEERING, INC. BLAIR CREEK STREAM MITIGATION PROJECT (DMS #100047) MONITORING YEAR 1 REPORT



(Year 1 Survey Data Collected: October 2022)

Restoration

Looking at the Right Bank

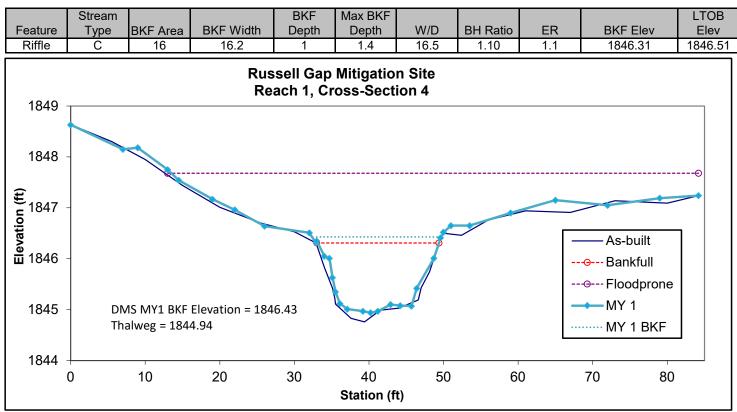


Year 1 Survey Collected: October 2022

Restoration

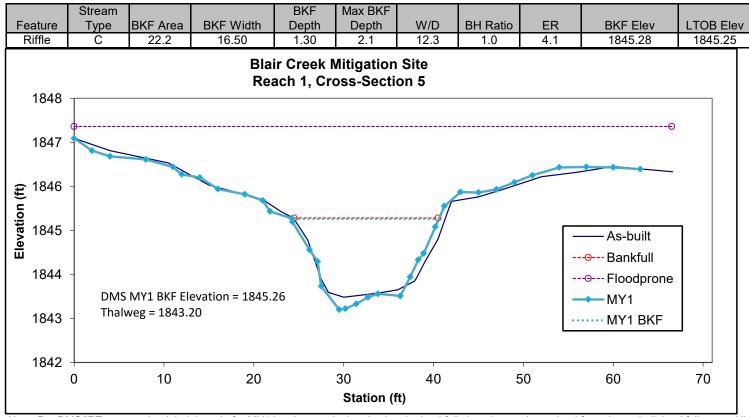
Looking at the Right Bank

Year 1 Survey Collected: September 2022


Restoration

Looking at the Left Bank

Looking at the Right Bank

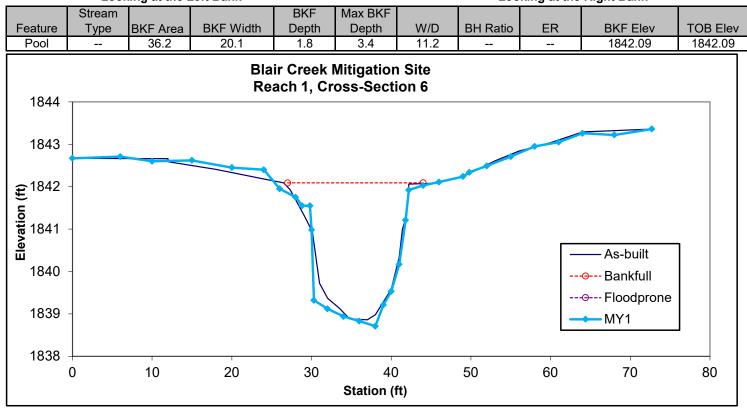

Year 1 Survey Collected: September 2022

Looking at the Left Bank

Looking at the Right Bank

Note: Per DMS/IRT request, bank height ratio for MY1 has been calculated using the bankfull elevation as determined from the as-built bankfull area. All other values were calculated using the as-built bankfull elevation.

Year 1 Survey Collected: October 2022

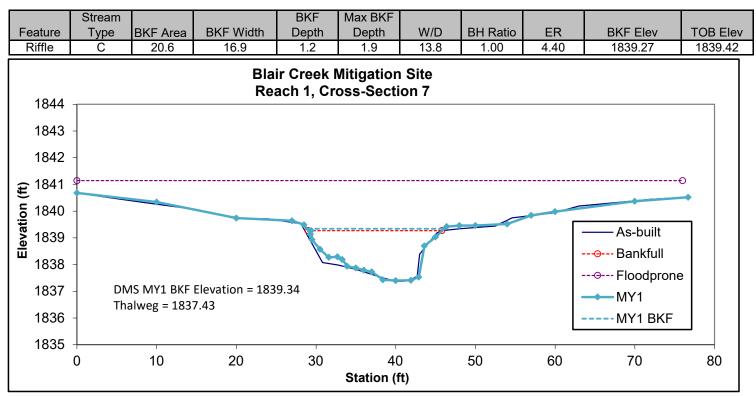

Restoration

Looking at the Left Bank

Looking at the Right Bank

MICHAEL BAKER ENGINEERING, INC. BLAIR CREEK STREAM MITIGATION PROJECT (DMS #100047) MONITORING YEAR 1 REPORT

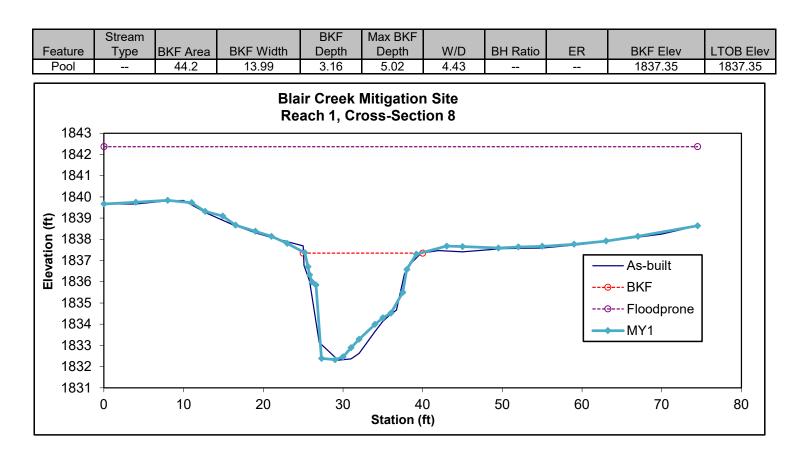
Looking at the Left Bank


Permanent Cross-Section 7

Year 1 Survey Collected: September 2022

Restoration

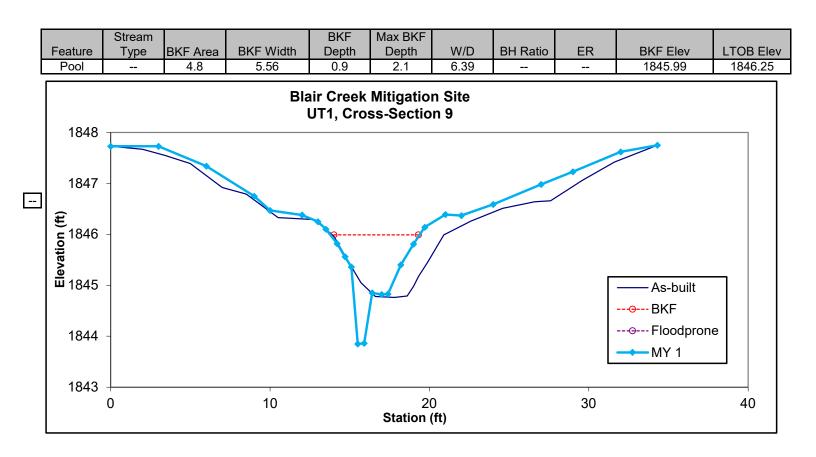
Looking at the Right Bank


Year 1 Survey Collected: October 2022

Looking at the Left Bank

Looking at the Right Bank

MICHAEL BAKER ENGINEERING, INC. BLAIR CREEK STREAM MITIGATION PROJECT (DMS #100047) MONITORING YEAR 1 REPORT

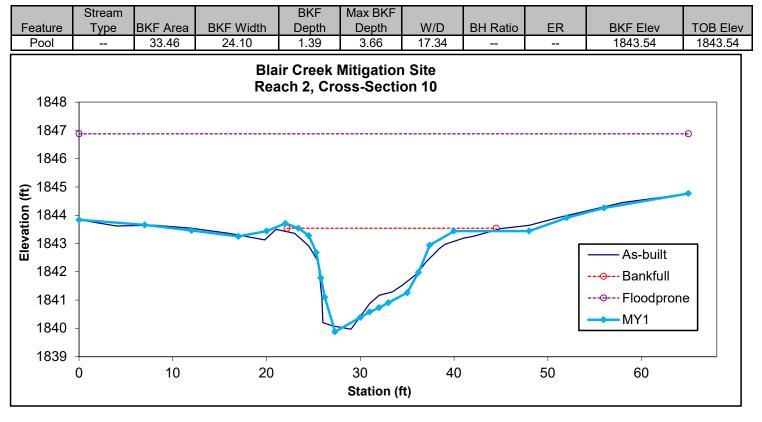

Looking at the Left Bank

Year 1 Survey Collected: September 2022

Enhancement 2

Looking at the Right Bank

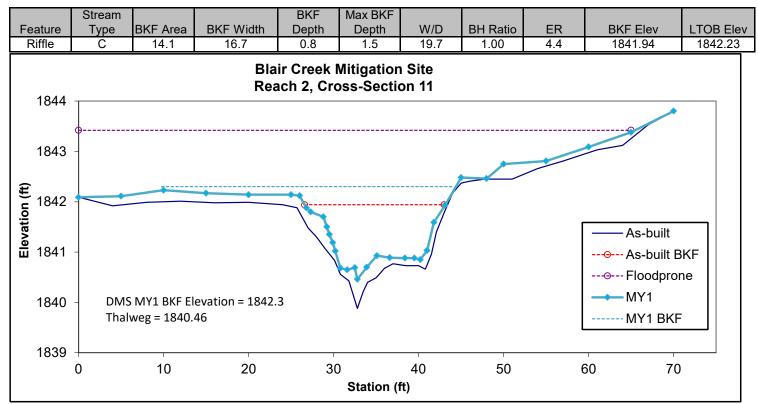
Looking at the Left Bank



Year 1 Survey Collected: November 2022

Restoration

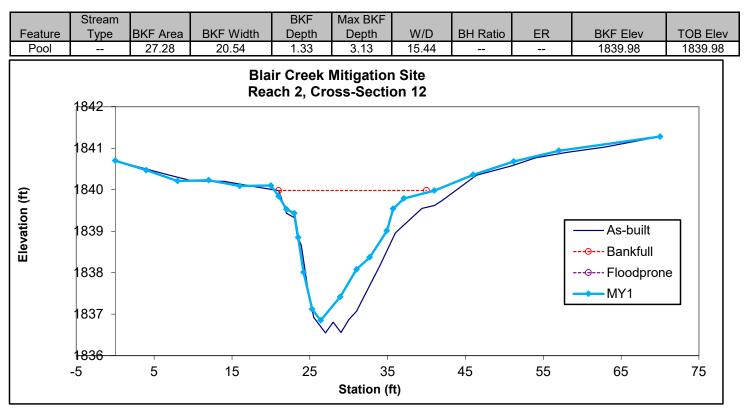
Looking at the Right Bank


Looking at the Left Bank

Year 1 Survey Collected: September 2022

Restoration

Looking at the Right Bank

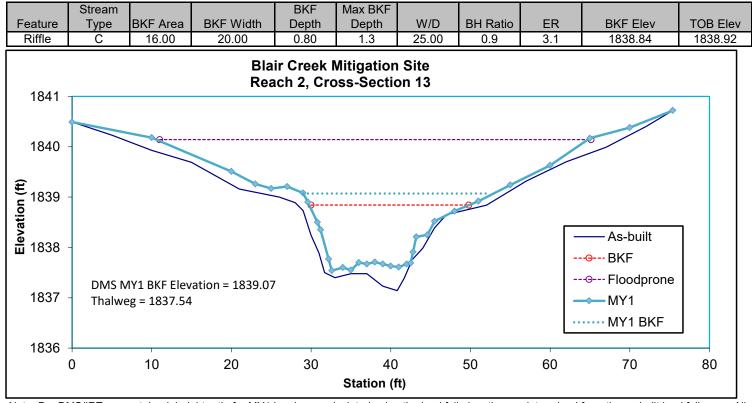

Looking at the Left Bank

Year 1 Survey Collected: November 2022

Restoration

Looking at the Right Bank

Looking at the Left Bank

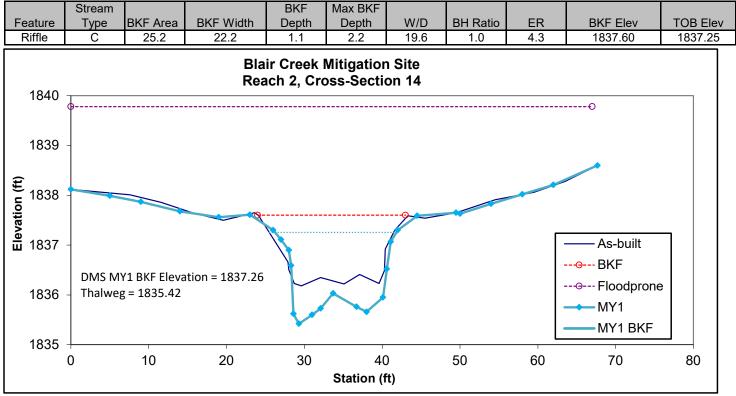

Permanent Cross-Section 13

Year 1 Survey Collected: September 2022

Restoration

Looking at the Right Bank

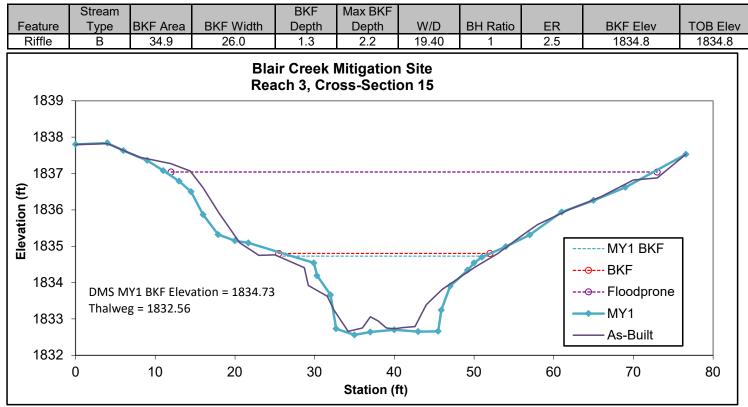
Year 1 Survey Collected: October 2022


Restoration

Looking at the Left Bank

Looking at the Right Bank

Year 1 Survey Collected: October 2022


Restoration

Looking at the Left Bank

Looking at the Right Bank

Table 8. Baseline Stream Data Summary

Blair Creek Restoration Project: DMS Project No ID. 100047

	Reach	1	(North	Fork)
--	-------	---	--------	-------

anamatan	D	-Existing Cond	ition	Refer	ence Reach(es) Data		Design			As-built	
arameter	Pre	-Existing Cond	ltion		Composite			Design			As-Dulit	
imension and Substrate - Riffle	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Ma
BF Width (ft)		8.57 - 8.59						16.5 - 17.0		16.48	16.60	17.
Floodprone Width (ft)		12.9 - 34.7						60.00		66.46	67.31	77
BF Mean Depth (ft)		1.43 - 1.48						1.1-1.2		1.09	1.24	1.3
BF Max Depth (ft)		2.77						1.4 - 1.8		1.55	1.84	2.1
BF Cross-sectional Area (ft ²)		12.3 - 12.7						18.2 - 20.4		17.91	20.58	21.
Width/Depth Ratio		6.01 - 5.79		10.00	12.50	15.00		14.2 - 15		11.95	12.58	15.
Entrenchment Ratio		1.5 - 4.05						3.5-3.6		3.93	4.04	4.5
Bank Height Ratio		2.7 - 1.8		1.00	1.05	1.10		1.00		1.00	1.00	1.0
d50 (mm)												
attern												
Channel Beltwidth (ft)		N/A					58-60	N/A	132-135	53	67	92.0
Radius of Curvature (ft)		N/A					33-34	N/A	50-51	33	45	61.0
Rc/Bankfull width (ft/ft)		N/A		2.00	2.5000	3.00		2.0-3.0		1.9	2.7	3.7
Meander Wavelength (ft)		N/A					115.00	N/A	235.00	134	163	229.
Meander Width Ratio		N/A		3.50	5.7500	8.00	3.50	N/A	8.00	3.1	4.0	5.6
rofile											-	
Riffle Length (ft)										6.10	33.54	87.5
Riffle Slope (ft/ft)	0.0260	0.0345	0.0430				0.006-0.007	0.0080	0.009-0.01	-0.018	0.011	0.0
Pool Length (ft)										11.00	42.00	70.0
Pool to Pool Spacing (ft)		57.50	80.00				58	88.5	119	30.00	80.19	135.
Pool Max Depth (ft)	1.14	1.9600	2.77				1.8	3.0	4.2	0.00	0.00	5.0
ubstrate and Transport Parameters						·						
SC% / Sa% / G% / C% / Bo%		7% / 89% / 4%									1% / 83% / 16%	
d16 / d35 / d50 / d84 / d95 dditional Reach Parameters	1.	/ 17 / 21 / 38 /	60							16	/ 28 / 37 / 64 / 3	127
Drainage Area (SM)		1.38 - 1.53						1.38			1.38	
Impervious cover estimate (%)												
Rosgen Classification		B - E			C4			C4			C4	
BF Velocity (fps)		3.15 - 3.20			5.0	5.0		3.00				
BF Discharge (cfs)		38.7 - 40.7						61.85				
Valley Length											2,280.00	
Channel Length (ft)		2,399						2,730			2,771.90	
Sinuosity Water Surface Slope (Channel) (ft/ft)		1.06						1.22			1.22	

Table 8. Baseline Stream Data Summary Blair Creek Restoration Project: DMS Project No ID. 100047

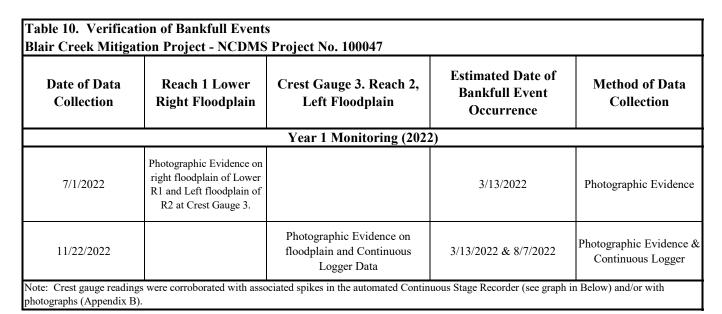
				Refer	ence Reach(es) Data						
Parameter	Pre	-Existing Condi	tion		Composite	,		Design			As-built	
Dimension and Substrate - Riffle	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
BF Width (ft)		9.82 - 11.26						17.0		19.30	21.34	23.
Floodprone Width (ft)		25.66 - 26.55						60		67.67	70.39	73.
BF Mean Depth (ft)		1.54 - 1.33						1.2		0.89	0.94	1.0
BF Max Depth (ft)		2.77						1.2		1.42	1.73	2.1
BF Cross-sectional Area (ft ²)		15.16 - 15.01						20.4		18.86	19.76	21.
Width/Depth Ratio		6.38 - 8.47		10.00	12.50	15.00		14.2		19.69	23.05	26.
Entrenchment Ratio		2.61 - 2.36						3.5		3.10	3.31	3.5
Bank Height Ratio		1.96 - 1.54		1.00	1.05	1.10		1.1		1.00	1.00	1.0
d50 (mm)												
Pattern												
Channel Beltwidth (ft)		N/A					65.00		135	47.0	56	72.
Radius of Curvature (ft)		N/A					34.00		50	31.0	43	48.
Rc/Bankfull width (ft/ft)		N/A		2.00	2.50	3.0	2.00		2.9	1.8	3	2.
Meander Wavelength (ft)		N/A					125.00		235	129.0	149	174
Meander Width Ratio		N/A		3.50	5.75	8.0	3.80		7.9	2.8	3	4.
Profile		- 1			T	I.	1				1	
Riffle Length (ft)										6.71	34.705	64.
Riffle Slope (ft/ft)	0.026	0.035	0.043				0.0075	0.0084	0.0093	-0.0460	0.0010	0.10
Pool Length (ft)										10.00	37.00	70.0
Pool to Pool Spacing (ft)	35	58	80				60.00	89.00	118.00	30.00	72.40	105.
Pool Max Depth (ft)	1.1	2.0	2.8				1.8000	3.00	4.2000	0.00	0.00	0.0
Substrate and Transport Parameters												
SC% / Sa% / G% / C% / B%	0%	/ 1% / 91% / 8%	/ 0%							0% /	7% / 92% / 1%	ó / 0%
d16 / d35 / d50 / d84 / d95	13	6 / 18 / 23 / 42 / 1	31							7	/ 13 / 18 / 40 /	55
Additional Reach Parameters												
Drainage Area (SM)		2.91						1.53				
Impervious cover estimate (%)												
Rosgen Classification		F4			C4			C4			C4	
BF Velocity (fps)				3.5	4.3	5.00		3.00				
BF Discharge (cfs)								61.85				
Valley Length											1,310	
Channel Length (ft)		185						1,520			1,555	
Sinuosity		1.07		1.2	1.3	1.40		1.14			1.1	
Water Surface Slope (Channel) (ft/ft)												

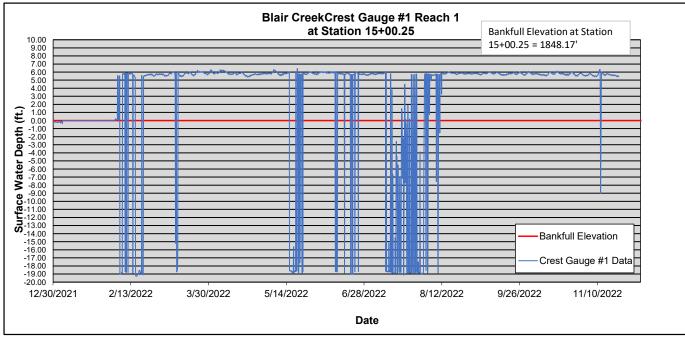
Reach 3 Blair Creek, below confluence of North and South Fo	ork.											
Parameter	Pre	Existing Cond	ition	Refer	ence Reach(es) Data		Design			As-built	
a rameter	110-	Existing Cond	ittoii		Composite			Design			113-Dunt	
Dimension and Substrate - Riffle	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
BF Width (ft)		19.20						22.50			30.40	
Floodprone Width (ft)								60.00			58.48	
BF Mean Depth (ft)		1.33									1.10	
BF Max Depth (ft)								1.80			2.14	
BF Cross-sectional Area (ft ²)		25.6						33.8			33.01	
Width/Depth Ratio		14.44		10.00	12.50	15.00		15.00			27.80	
Entrenchment Ratio												
Bank Height Ratio		2.00		1.00	1.05	1.10						
d50 (mm)												
Pattern												
Channel Beltwidth (ft)		N/A						N/A		43.00	46.00	50.00
Radius of Curvature (ft)		N/A						N/A		33.00	40.00	46.00
Rc/Bankfull width (ft/ft)		N/A		2.00	2.50	3.00		N/A		1.40	1.60	1.90
Meander Wavelength (ft)		N/A						N/A		131.00	134.00	136.00
Meander Width Ratio		N/A		3.50	5.75	8.00		N/A		1.80	1.90	2.10
Profile		•			•					•		
Riffle Length (ft)												
Riffle Slope (ft/ft)												
Pool Length (ft)												
Pool to Pool Spacing (ft)												
Pool Max Depth (ft)							2.2500	3.75	5.2500			
Substrate and Transport Parameters						-				-		
SC% / Sa% / G% / C% / B%												
d16 / d35 / d50 / d84 / d95					•	•						
Additional Reach Parameters		•		-						8		•
Drainage Area (SM)		2.91						2.91				
Impervious cover estimate (%)												
Rosgen Classification		F4			C4			C4			C4	
BF Velocity (fps)				3.50	4.25	5.00		3.76				
BF Discharge (cfs)								128.00				
Valley Length												
Channel Length (ft)		185						185			133.6	
Sinuosity		1.07		1.20	1.30	1.40					1.09	
Water Surface Slope (Channel) (ft/ft)		1.07		1.20	1.50	1.40					1.09	

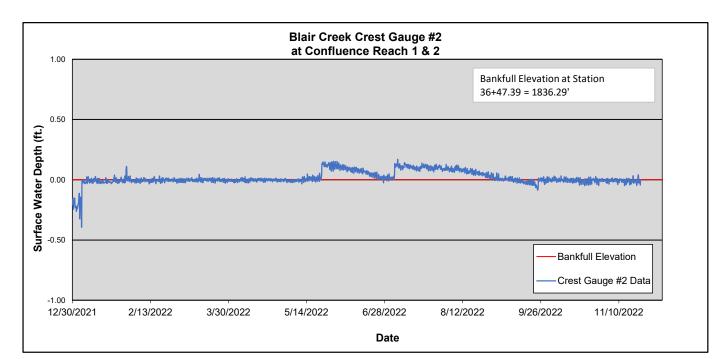
Reach UT1- *As Built data from pool XS												
				Refer	ence Reach(es) Data						
Parameter	Pre-	Existing Cond	lition		Composite	, 		Design			As-built	
Dimension and Substrate - Riffle	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
BF Width (ft)								7.25			10.14	
Floodprone Width (ft)											34.30	
BF Mean Depth (ft)											0.81	
BF Max Depth (ft)								1.00			1.53	
BF Cross-sectional Area (ft ²)								4.30			8.18	
Width/Depth Ratio								12.40				
Entrenchment Ratio												
Bank Height Ratio												
d50 (mm)												
Pattern												
Channel Beltwidth (ft)		N/A						N/A		15.00	17.00	18.00
Radius of Curvature (ft)		N/A						N/A				
Rc/Bankfull width (ft/ft)		N/A						N/A		3.20	3.50	3.80
Meander Wavelength (ft)		N/A						N/A		67.00	70.00	72.00
Meander Width Ratio		N/A						N/A		3.20	3.50	3.80
Profile												
Riffle Length (ft)												
Riffle Slope (ft/ft)												
Pool Length (ft)												
Pool to Pool Spacing (ft)												
Pool Max Depth (ft)												
Substrate and Transport Parameters												
SC% / Sa% / G% / C% / B%												
d16 / d35 / d50 / d84 / d95												
Additional Reach Parameters												
				1						[1
Drainage Area (SM)												
Impervious cover estimate (%)												
Rosgen Classification												
BF Velocity (fps)												
BF Discharge (cfs)												
Valley Length												
Channel Length (ft)												
Sinuosity Water Surface Slope (Channel) (ft/ft)											173 1.02	

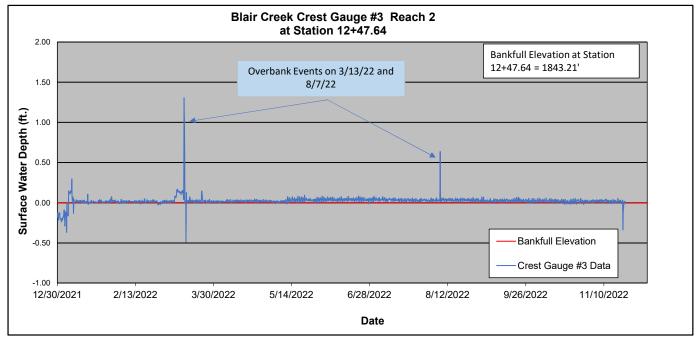
· · ·														n	ach 1													
Stream Reach			Cro	ss-section X-	1 (Pool)					Crow	section X-2	(Diffle)		Re	acn I		Cross	-section X-3	(Peel)					Cross	section X-4 ((D;ffla)		
	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY-
Bankfull Elevation (ft) - Based on AB-Bankfull ¹ Area	1848.21	1848.21						1848.06	1848.33						1847.87	1847.87						1846.31	1846.43	I				Γ
Bank Height Ratio Based on AB Bankfull ¹ Area								1.00	1.00													1.00	1.10					1
Thalweg Elevation	1845.23	1845.85						1845.95	1846.01						1844.24	1843.62						1844.76	1844.94					1
LTOB ² Elevation	1848.21	1848.21						1848.06	1848.14						1847.87	1847.88						1846.31	1846.51					
LTOB ² Max Depth (ft)	2.98	2.40						2.11	2.00						3.63	4.25						1.60	1.40					
LTOB ² Cross Sectional Area (ft ²)	25.48	22.60						20.85	16.70						38.37	34.27						17.90	16.00					
Stream Reach	20.10	22.00						20.00	10.70					Re	ach 1	51.27					1 1	17.70	10.00	I		II		
Arean Reach			Cros	s-section X-	5 (Riffle)					Cross	-section X-6	(Pool)					Cross-	section X-7	(Riffle)					Cross	-section X-8	(Pool)		
	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Bankfull Elevation (ft) - Based on AB-Bankfull ¹ Area	1845.28	1845.26						1842.09	1842.09						1839.27	1839.34						1837.35	1837.35	I				1
Bank Height Ratio Based on AB Bankfull ¹ Area	1.00	1.00													1.00	1.00												1
Thalweg Elevation	1843.48	1843.20						1838.86	1838.71						1837.37	1837.43						1832.31	1832.33				()	
LTOB ² Elevation	1845.28	1845.25						1842.09	1842.09						1839.27	1839.42						1837.35	1837.35				í	1
LTOB ² Max Depth (ft)	2.10	2.10						3.20	3.40						1.90	1.90						5.04	5.02				í l	1
LTOB ² Cross Sectional Area (ft ²)	21.90	22.20						33.50	36.20						21.70	20.60						47.58	44.20				I	
Stream Reach			-	UT-1		-												Reach 2										
	-		Cro	ss-section X-	9 (Pool)					Cross-	section X-10	(Pool)					Cross-s	ection X-11	(Riffle)					Cross-	section X-12	. (Pool)		
	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Bankfull Elevation (ft) - Based on AB-Bankfull ¹ Area	1845.99	1845.99						1843.54	1843.54						1841.94	1842.30						1839.98	1839.98				I'	
Bank Height Ratio_Based on AB Bankfull ¹ Area															1.00	1.00						-	-				I'	
Thalweg Elevation	1844.76	1843.85						1839.97	1839.88						1839.88	1840.46						1836.55	1836.85				1	
LTOB ² Elevation	1845.99	1846.25						1843.54	1843.54						1841.94	1842.23						1839.88	1839.98				I'	
LTOB ² Max Depth (ft)	1.20	2.10						3.57	3.66						2.06	1.50						3.43	3.13				<u> </u>	<u> </u>
LTOB ² Cross Sectional Area (ft ²)	5.60	4.80						36.81	33.46						23.70	14.10						36.69	27.28					L
Stream Reach							Re	ach 2										Reach 3										
			Cross	s-section X-1	3 (D:01a)					Carrow	ection X-14	(D:60-)					6	ection X-15	(D:07.)									

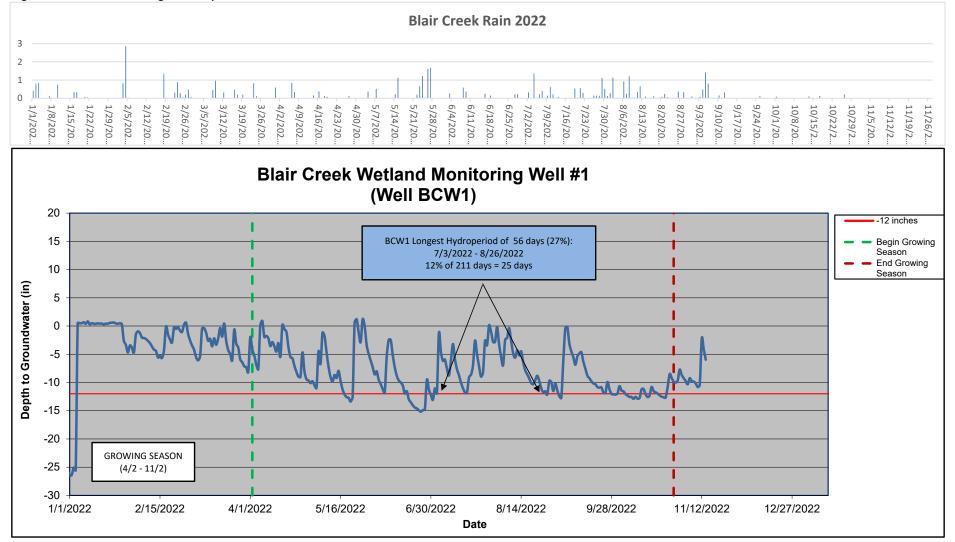
			Cross-	section X-13	(Riffle)					Cross-	section X-14	(Riffle)					Cross-	section X-15	(Riffle)		
	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Bankfull Elevation (ft) - Based on AB-Bankfull ¹ Area	1838.84	1839.07						1837.60	1837.26						1834.80	1834.73					
Bank Height Ratio_Based on AB Bankfull ¹ Area	1.00	0.90						1.00	1.00						1.00	1.00					
Thalweg Elevation	1837.14	1837.54						1836.18	1835.42						1832.66	1832.56					
LTOB ² Elevation	1838.84	1838.92						1837.60	1837.25						1834.80	1834.80					
LTOB ² Max Depth (ft)	1.70	1.30						1.40	2.20						2.14	2.20					
LTOB ² Cross Sectional Area (ft ²)	21.13	16.00						18.90	25.20						33.01	34.90					

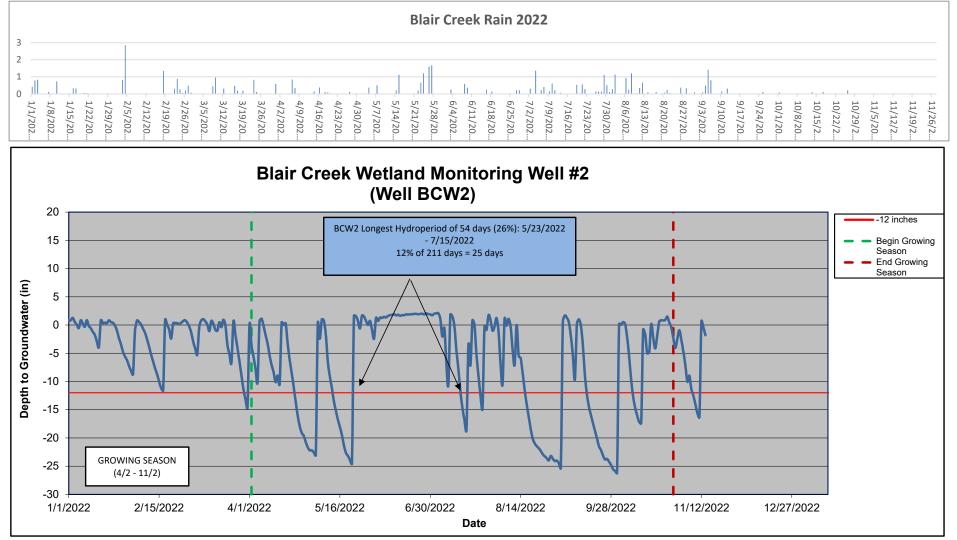

Note: The smaller the channel the closer the survey measurements are to their limit of reliable detection, therefore inter-annual variation in morphological measurement (as a percentage) is by default magnified as channel size decereases. Some of the variability above is the result of this factor and some is due to the large amount of depositional sediments observed. The above morphology parameters reflect the 2018 guidance that arose from the mitigation technical workgroup consisting of DMS, the IRT and industry mitigation providers/practitioners. The outcome resulted in the focus on three primary morphological parameters of interest for the purposes of tracking channel change moving forward. They are the bank height ratio using a constant As-built the cross sectional area and max depth based on each years low to p of bank. These are calculated as follows:

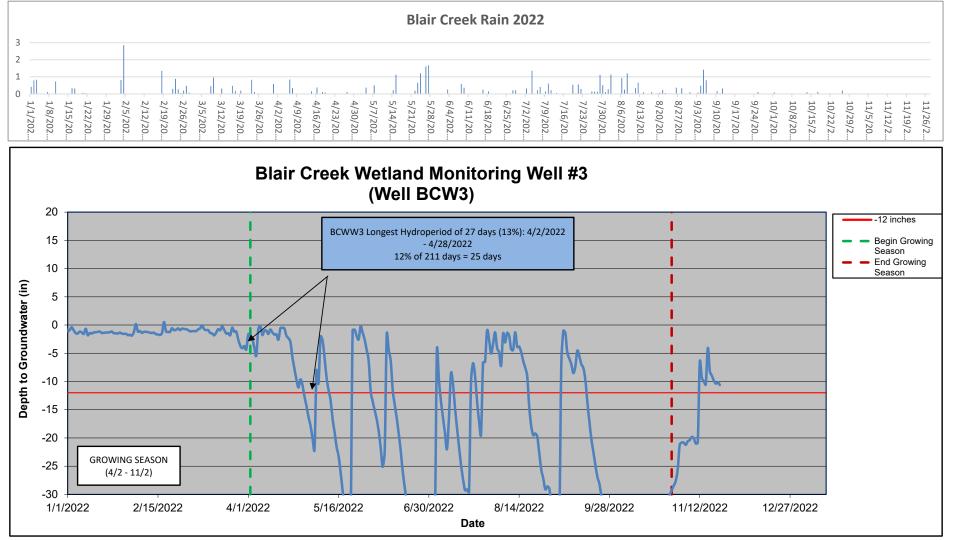

1 - Bank Height Ratio (BHR) takes the As-built bankful area as the basis for adjusting each subsequent years bankful elevation. For example if the As-built bankful area was 10 ft2, then the MY1 bankful elevation would be adjusted until the calculated bankful area within the MY1 cross section survey = 10 ft2. The BHR would then be calculated with the difference between the low top of bank (LTOB) elevation for MY1 and the thalweg elevation for MY1 in the numerator with the difference between the MY1 bankful elevation and the MY1 thalweg elevation in the denominator. This same process is then carried out in each successive year.

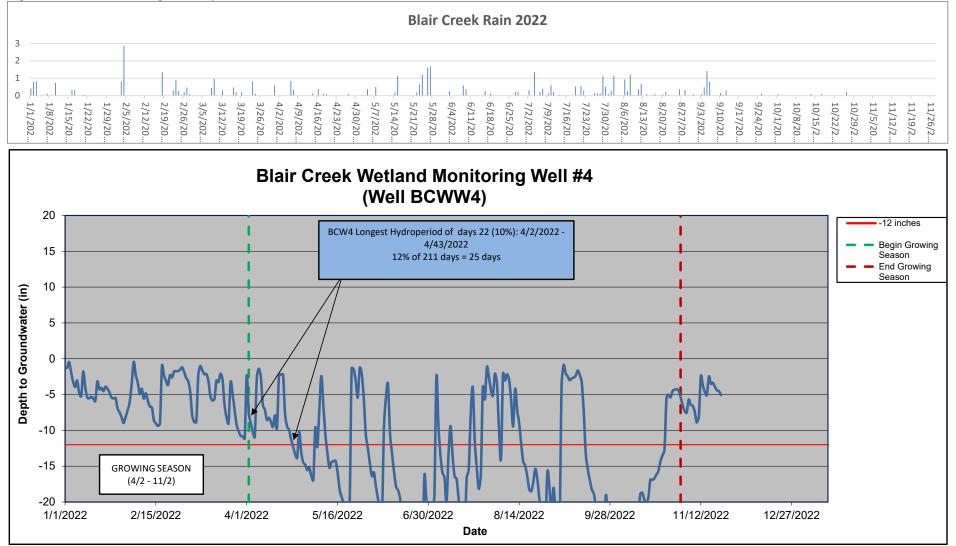

2 - **LTOB Area and Max depth** - These are based on the LTOB elevation for each years survey (The same elevation used for the LTOB in the BHR calculation). Area below the LTOB elevation will be used and tracked for each year as above. The difference between the LTOB elevation and the thalweg elevation (same as in the BHR calculation) will be recroded and tracked above as LTOB max depth.

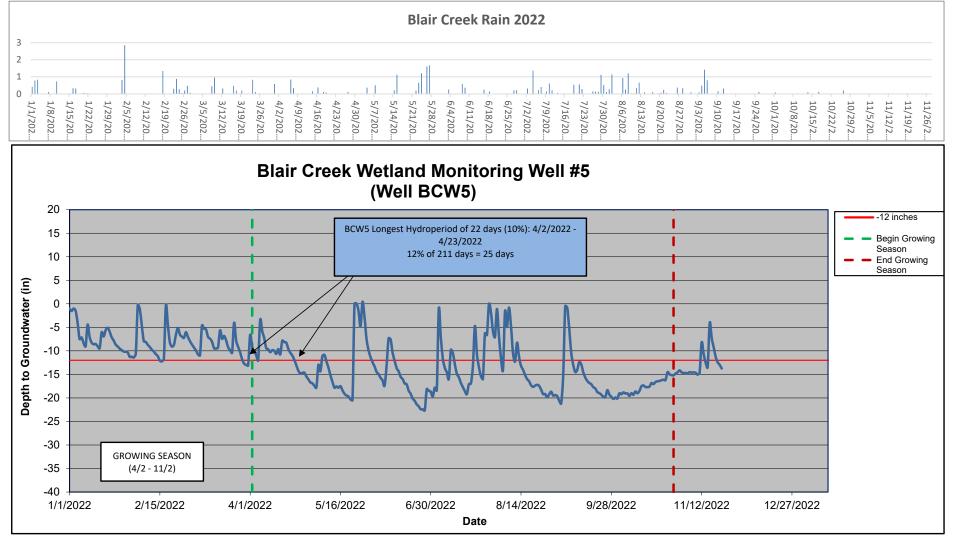

APPENDIX E

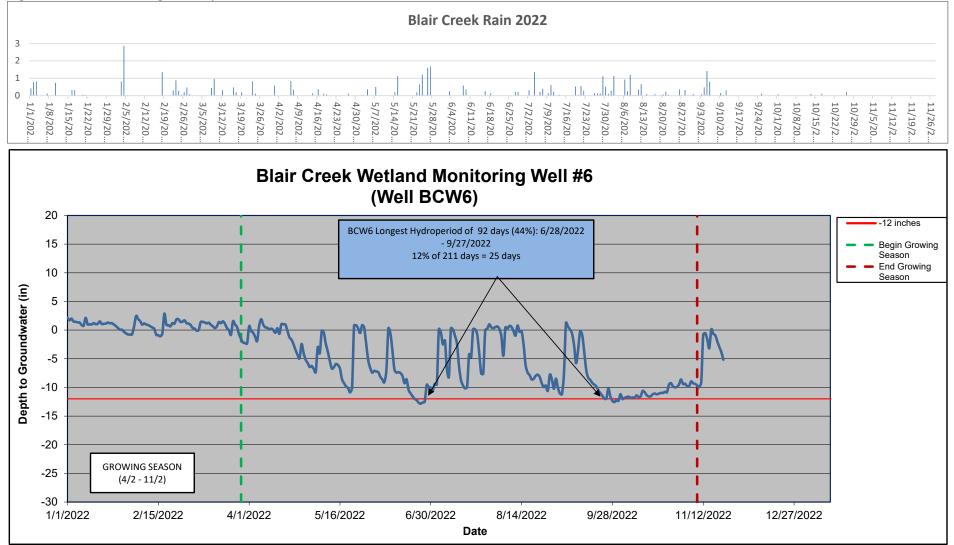

Hydrologic Data

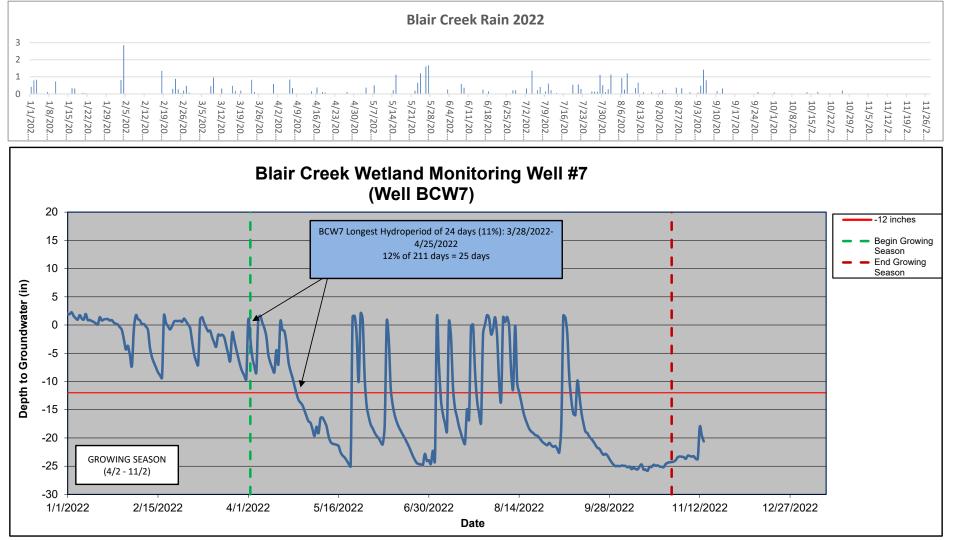


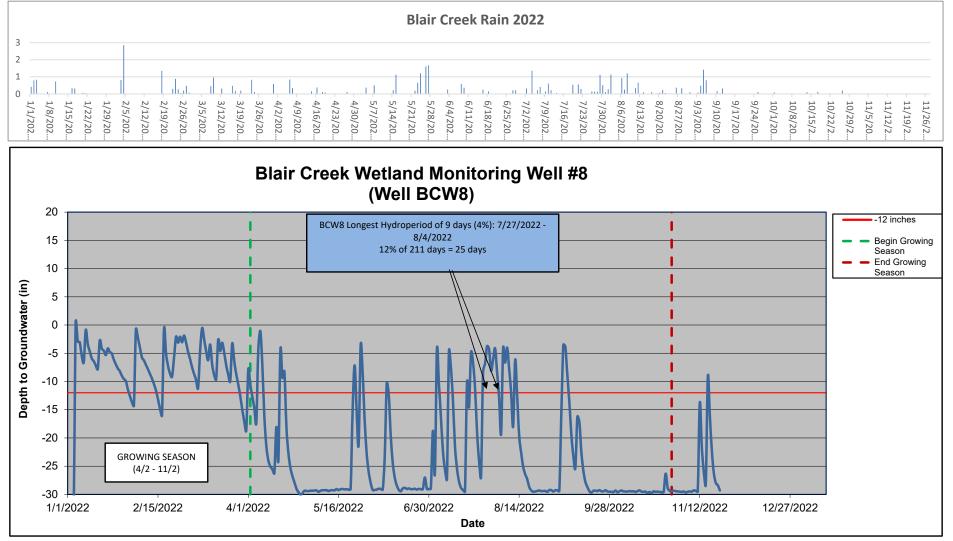


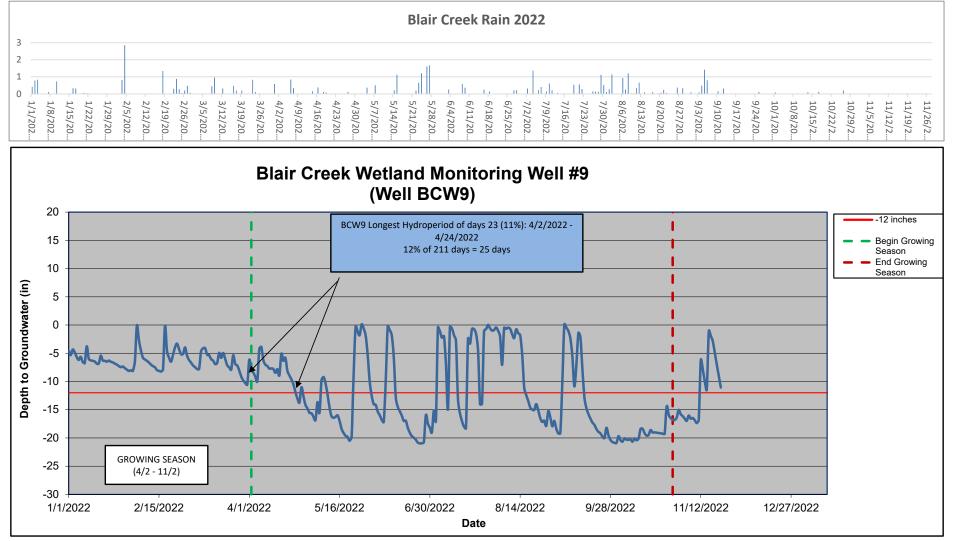


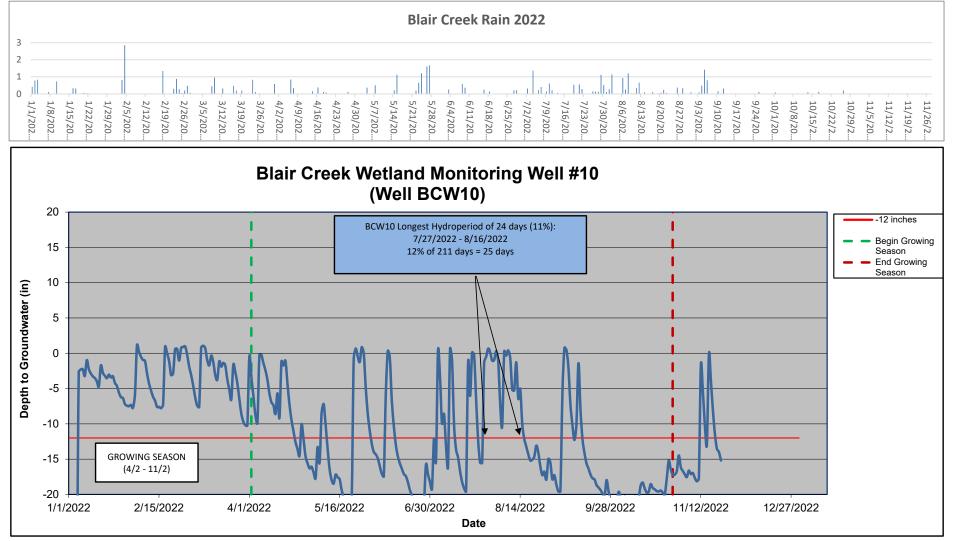




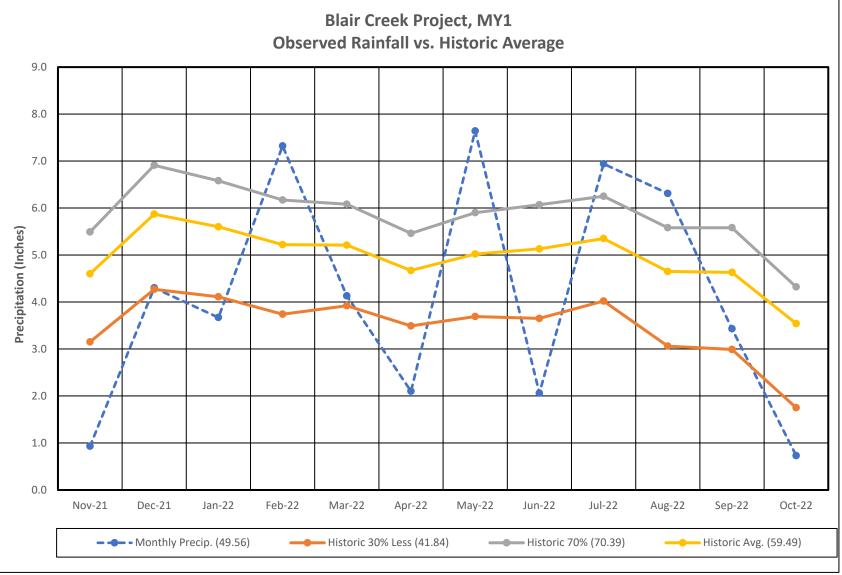








Well ID			Percentag <12 inches	ge of Consec from Grou							Consecutive eeting Criter							ge of Cumula from Grou							tive Days M Criteria ³	eeting		
	Year 1 (2022)	Year 2 (2023)	Year 3 (2024)	Year 4 (2025)	Year 5 (2026)	Year 6 (2027)	Year 8 (2028)	Year 1 (2022)	Year 2 (2023)	Year 3 (2024)	Year 4 (2025)	Year 5 (2026)	Year 6 (2027)	Year 8 (2028)	Year 1 (2022)	Year 2 (2023)	Year 3 (2024)	Year 4 (2025)	Year 5 (2026)	Year 6 (2027)	Year 8 (2028)	Year 1 (2022)	Year 2 (2023)	Year 3 (2024)	Year 4 (2025)	Year 5 (2026)	Year 6 (2027)	
	(2022)	(2020)	(2021)	(2020)	(2020)	(2027)	(2020)	(2022)	(2020)			Monitorin					(2021)	(2020)	(2020)	(2027)	(2020)	(2022)	(2020)	(2021)	(2020)	(2020)	(2027)	1 (202
CW1	27.0							56							82.0							172						
CW2	26.0							54							68.0							144						
CW3	13.0							27							43.0							90						T
CW4	10.0							22							38.0							80						T
CW5	10.0							22							30.0							63						T
CW6	44.0							92							47.0							199						T
CW7	11.0							24							30.0							63						T
CW8	4.0							9							17.0							35						T
CW9	11.0							23							41.0							87						T
CW10	11.0							24							38.0							81						T



*Surface water flow is estimated to have occurred when the pressure transducer reading is equal to or above 0.05 feet in depth.

MICHAEL BAKER ENGINEERING, INC BLAIR CREEK MITIGATION PROJECT (DMS #100047) YEAR 1 MONITORING REPORT

		Мо	st Consecuti	ive Days Me	eting Criter	ria ¹				Cumulative	Days Meeti	ng Criteria ²		
Flow Gauge ID	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7
	(2022)	(2023)	(2024)	(2025)	(2026)	(2027)	(2028)	(2022)	(2023)	(2024)	(2025)	(2026)	(2027)	(2028)
					Flow	Gauges (In	nstalled Jar	uary, 2022))					
BC Flow 1	259.0							315.0						
Notes:														
Indicates the numbe	er of consecut	tive days withi	n the monitori	ng year where	e flow was me	easured.								
² Indicates the numbe	er of cumulat	ive days within	n the monitori	ng year where	flow was me	asured.								
Success criteria will		•		÷.			infall year.							
Surface water flow is						5		n denth						

Figure 7. Observed Rainfall vs. Historical Average

